
How to Cite: 

Poonam and Dr. Chitamani Tiwari (Dec 2018). A complete compressing sparse graphs in dijkstra’s 
shortest path algorithm 
International Journal of Economic Perspectives,12(1), 137-153.  

Retrieved from https://ijeponline.org/index.php/journal/article 

© 2018 by The Author(s). ISSN: 1307-1637 International journal of economic perspectives is licensed under a 

Creative Commons Attribution 4.0 International License. 

Corresponding author: Poonam and Dr. Chitamani Tiwari 
Submitted: 27Oct 2018, Revised: 09 Nov 2018, Published :  Dec 2018 

137 

 
A COMPLETE COMPRESSING SPARSE GRAPHS IN DIJKSTRA’S SHORTEST PATH 

ALGORITHM 

 

Poonam1 
Ph.D. Research Scholar Dept. of Mathematics, 
Maharishi School of Science, 
MUIT University, Lucknow, U.P. 
 
 Dr. Chitamani Tiwari2    

Professor, Research Guide, 
Dept. of Mathematics, 
  Maharishi School of Science, 
  MUIT University, Lucknow, U.P. 
 

ABSTRACT 
 
Dijkstra algorithm is one of the prominent algorithms to find the 

shortest path from the source node to a destination node. It uses the 

greedy approach to find the shortest path. The concept of the 

Dijkstra algorithm is to find the shortest distance (path) starting 

from the source point and to ignore the longer distances while doing 

an update. One of the problems that arises from the continuously 

growing amount of data is that it slows down and limits the uses of 

large graphs in real world situations. Because of this, studies are 

being done to investigate the possibility of compressing data in 

large graphs. This report presents an investigation on the usefulness 

of compressing sparse graphs and then applying Dijkstra’s shortest 

path algorithm. A minimal spanning tree algorithm was used to 

compress a graph and compared with a self-implemented 

compression algorithm. The minimal distances and how long time it 

takes for Dijkstra's algorithm to find the shortest path between 

nodes are investigated. The results show that it is not worth 

compressing the type of sparse graphs used in this study. It is hard 

to compress the graph without losing too much of the edges that 

preserve the shortest paths. The time gained when running 

Dijkstra's algorithm on the compressed graphs is not enough to 

compensate for the lack of getting a good shortest path solution. 

 

Keywords: Algorithm, graphs, tree, spars, shortest, compressed etc.1.0 Introduction 

 
The first graph problem which lay the foundation for graph theory was introduced by 

Leonard Euler. The problem is called “Seven bridges of Königsberg”. The problem was about 

finding a walk over the seven bridges and crossing each bridge exactly once. This graph 

problem was an undirected graph with seven edges and four nodes. Where the nodes 
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represented the islands of the city and the edges represented the bridges connecting the 

islands [7]. 

 
Since then the usage of graphs have been increasing and is now used almost everywhere 

when there is a problem to be modeled. The difference today compared to the early graphs 

that were used is that they are a lot bigger now. Instead of around ten nodes there are now 

millions of nodes in the graphs. Because of this, research has been made to compress the size 

of these graphs in the cases where they become too large [4]. 

 
Graphs has for a long time been widely used in computer science. It is used for modelling, 

storage and more. A lot of problems can be modelled as a graph and therefore they are of 

great importance when a complex problem have to be solved or when trying to find certain 

information in connected data. However, today's large sets of data is making it hard for 

engineers to make use of such large graphs. One example is the web graph covering the 

entire internet with all the hyperlinks between the different links, making it a large graph 

with billions of nodes [4]. It is because of problems like this that a search for compressing 

the large data graphs into smaller ones exists. The advantage of compressing a graph is that 

the size can be smaller and that it can be a way for speeding up certain algorithms. A lot of 

research has been made with compressing large graphs, such as the web graph or social 

network graphs. The motivation for the search after good compression algorithms has mostly 

been to be able to store graphs in the main memory of servers and computers. This is 

because the time it takes to read data from the hard drive is about five times slower than 

reading directly from the main memory [6]. 

 
Dijkstra’s shortest path algorithm is a well known graph algorithm in computer science. It is 

used for finding shortest paths in a graph between two given nodes and can for example be 

used for finding the shortest way from one city to another city in a road network graph. This 

report will investigate if a compression on a sparse graph will speed up runtime of Dijkstra's 

shortest path algorithm without losing too much of the minimal distances between the 

nodes.Problem Statement 

 
The goal of this report is to look at a way to compress a graph that will increase the speed of 

the Dijkstra’s shortest path algorithm while still trying to keep the minimal distances 

between nodes. In this report a minimal spanning tree algorithm will be used to compress a 

graph, thus greatly reducing the number of edges of the graph. Besides this we will also 

construct our own compression algorithm to compare results of running the shortest path 

algorithm on the original graph, minimal tree spanned graph and our own compressed 

graph. 

 
The question that we will try to answer is if it is worth compressing a weighted directed 

sparse graph corresponding to a road network, for running Dijkstra's algorithm while still 

keeping all the nodes with either a minimal spanning tree or our own dynamic Dijkstra 

compression? This will be evaluated with the results of the following: 
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● the average path length between two randomly chosen nodes when running the 

shortest path algorithm on the different graphs 

● the time it takes to run the shortest path algorithm on the different graphs 
 
 
2.1 MOTIVATION 

According to this algorithm here we use  compressed graphs work which is an important 

question in today’s technology because the information that is in use everyday continues to 

grow. The field of big data introduces problems with large sets of information that is hard to 

handle. If there is no way to store all that information in a smarter and more efficient way it 

will become problematic to use the information. Compressing graphs can reduce the size of 

such large datasets and is a way for increasing the speed for certain algorithms, like finding a 

path between two nodes in a dataset. It is also a great way to shrink the size of the graph so 

that it can be stored in the main memory and therefore avoid reading from the disk, or to 

visualize a graph to make its properties more visible. 

 
Previous work has mostly investigated the ability to compress large dense graphs. These 

often contain lots of nodes and a high amount of edges. There has been several studies 

showing that large graphs can be efficiently compressed. This report will however focus on 

smaller graphs and, especially so, corresponding to a road network or a graph used for 

deliveries with nodes corresponding to addresses and drop off points. Clearly, an interesting 

study would be to investigate if there is any time to gain when compressing a sparse graph 

and then trying to find the shortest path between two nodes. This while still making sure that 

the found path differ as little as possible in length compared to the original graphs shortest 

path. 

 
To compress the graph a minimal spanning tree (MST) algorithm will be used to 

experimentally see if this well known algorithm can yield good results when applying 

Dijkstra'salgorithm on it. It will give a graph that is compressed by the number of edges as 

much as possible without losing the connectivity of the graph. Since it is a MST and not only 

a regular spanning tree it should give relatively good results when the weights of the edges 

are of concern. This type of compression will be compared to a second compression where a 

higher number of edges will be kept, which should give better shortest path lengths in the 

graph at the cost of longer runtime for Dijkstra's algorithm compared to MST. 

 
The second compression algorithm that will be used is a modification of Dijkstra’s algorithm, 

with a goal of keeping the cheapest path between the nodes while still removing as many 

edges as possible. This compression will not reduce the number of edges as much as the MST 

but it will hopefully give better minimal distances between nodes. 

 
The results will give an insight of how much you can reduce the number of edges in a graph 

to speed up the Dijkstra's algorithm while still trying to keep the distances between nodes as 

close as possible to the original. 
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3.0 Background 
 
In the background some definitions, compression schemes and algorithms are presented 

needed for the reader to understand the report. 

3.1 Definition of graph 

A graph consists of nodes and edges. There are several types of graphs. They can be directed 

or undirected. An example of an undirected graph is for example a social network graph 

where you have edges between people who know each other. A directed graph is for example 

a public transport graph where every bus and subway has a fixed direction where it goes. 

 
The notation of a graph is the following: 

G = (V , E) where G is the graph, Vis the number of nodes in the graph and Eis thenumber of 
edges in the graph. 
 
The above is however not enough information to describe the graph. You also need to know 

which nodes are connected by the different edges. Below is described how an edge can be 

represented. 

 

E = (vSource, vTarget, weight) , where E is the edge, vSource is the node where the edge 

starts from, vTarget is the node the edge goes to and weight is the given weight the edgehas. 
The weight can for example represent how long the road is between two crossroads or drop 
off points for delivery companies. 
 
A multi-graph which is looked at in this report has the property that there can be several 

edges with the same direction between the two same nodes but with different weights [2, 3]. 

 

3.1.1 Sparse graph 

A sparse graph is a graph where there are relatively few number of edges compared to the 

number of nodes in the graph. The limit of when a graph becomes sparse is vague but in our 

graph experimentations it is clear that it is a sparse graph since the number of edges is about 

four times bigger than number of nodes [8]. Even though the definition of a sparse graph is 

vague formula 1 acts as a guideline. 

 
|E| = O(|V|k), formula 1 

Where E is the number of edges, V is the number of nodes and 1 < k < 2 [8]. 
 
 
3.2 Compression schemes 

A number of compression ideas have been proposed in previous different articles. Below are 

some good and easily understandable compressions presented to give the reader an idea of 

how graphs can be compressed. 
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3.2.1 Virtual Node 

The idea of using virtual nodes is to add a node to the graph which connects bipartite cliques 

where a group of nodes are all connected to another group of nodes. The virtual node then 

reduces the number of edges at the cost of only adding one node to the graph. See figure 1 

how 9 nodes and 20 edges is replaced with 10 nodes and 9 edges. Since it looks for large 

maximum bipartite cliques to reduce the number of edges it works best on dense graphs. 

This type of compression is used to speed up certain algorithms, like a shortest path 

algorithm, and reduce the size of information in the graph [1, 6]. 

 

 

Figure 1.Virtual node [1] 

3.2.2 SUPER-EDGES 

Another compression scheme which is intended specifically for weighted graphs is the one 

proposed in “Compression of weighted graphs” [5]. It is based on merging nodes and edges 

which have similarities in terms of same neighbors and edges with close amount of weight. 

This is best illustrated in figure 2. The three nodes (named: 2,3,4) in the graph given in the 

picture have the same neighbors, 1 and 5. Node 2 and 3 are then merged into one node and 

their corresponding edges will be given a new weight which is the average of the two edges 

that were merged. It thereby compresses the graph by reducing it with 2 edges and 1 node. 

The merge can continue as long as you have not reached the compression ratio you are after. 

This means that in the figure 2 we could as well merge in node 4 with the 2,3 node resulting 

in additional 2 edges and 1 node being removed. The compression ratio for this scheme 

ismeasured in |E′|/|E| where |E′| is the number of edges in compressed graph and |E| 

number in the uncompressed graph [5]. 
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Figure 2. Super-edge compression 
 
 

3.2.3 DYNAMIC DIJKSTRA COMPRESSION 

For comparison to the graph that has been compressed with the minimal spanning tree 

(MST) algorithm we choose to implement our own compression. This algorithm is based on 

running Dijkstra's algorithm on the graph several times until a wanted compression is 

reached. In both MST and our compression algorithm all the nodes are kept. This makes it 

easy for us to do the testing for the desired results since we can specify the same two nodes to 

run Dijkstra's algorithm between for all the different graphs i.e the original graph, minimal 

spanned tree graph, and our dynamic Dijkstra compressed graph. 

 
Our compression algorithm goes on until wanted compression is reached which is specified 

as a compression ratio between zero and one as mentioned in formula (2). The compression 

is measured as number of edges in the compressed graph divided by the number of edges 

inthe original graph. This ratio between the graph G’ and graph G and tells how much 

smaller graph G’ is compared to G. 

                                            cr(G′, G) 

|Eg′| 
|Eg| 

,formula 2where cr = compression ratio, G’ is the compressed graph, G is the graph we are 
comparing to and E is the number of edges. 
 
What the dynamic Dijkstra compression algorithm does is that it chooses a number of nodes 

that are considered important. In our experiment we chose the nodes with the highest degree 

as important. This is because those nodes would represent a drop off point or a crossroad 

with many available road connections. That makes it a good node to use since there are many 

edges for available paths to other nodes in the graph and can be considered a vital node. 

 
Before the algorithm starts we read in the original graph and we also create a new array that 

will hold all the nodes and edges of the new compressed graph. 

 
We then call a function to fill a node priority queue with the nodes that are considered 
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important. 

 
The algorithm then extracts these important nodes from an list and begins running Dijkstra's 

algorithm from the important node to all the other nodes in the graph. Then the edges which 

gives the shortest path from each node in the graph to the chosen node are added to the new 

graph. In the case where the edge already exists in the new compressed graph i will not be 

added. This algorithm keeps running until the desired compression ratio is reached. An 

example, with only five nodes and seven edges, of what the first iteration could look like can 

be seen in figure 3. 

 

Figure 3. First iteration of the dynamic Dijkstra algorithmThis compression algorithm can 
be developed and improved further with regards to which nodes to fill the priority queue 
with and deciding even more which edges to keep according to which nodes are considered 
more important. 
 

Algorithm 1. Dynamic Dijkstra compression 

Input: An uncompressed graph G, compression ratio cr where 

Output: A compressed graph G’ 1: for each Vertex v in G do 
2: if v is considered important do 3:  add v to vertexPriorityQueue 4:
 end if 
5: end for 

6: while cr is not reached do 
7: pop vertex v from vertexPriorityQueue 
8: Dijkstra(v, G, G’) 
9: for each path calculated by Dijkstra to v do 10:  if edges in path 
do not exist in G’ do 11:   add edges to G’ 
12: update cr 

13: if wanted cr is reached do 14:  break while loop 
15: end if 

16: end if 
17: end for 
18: end while 
19: return G’ 
 

3.3 Minimal Spanning Tree 

The MST works on a undirected, weighted and connected tree. A regular spanning tree will 
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always have a path to all nodes and remove all other edges. When the MST is used then the 

path will also have the lowest possible total weight. 

 
The uses for a MST of a graph is widely used. One example is if a neighbourhood should get 

new water pipes put in the ground. Then the company can make a graph over the 

neighbourhood with all the houses as nodes and all the possible ways to lay the pipes as 

edges between the houses. The company will of course try to minimize the cost of putting in 

the new pipes. Every edge in the graph gets a value, the cost of putting in the pipes along that 

path. Then the company will use a MST algorithm on that graph and the cheapest possible 

way to put in the pipes will be found [2].SHORTEST PATH ALGORITHM 

One of the most popular and best shortest path algorithms out there is the Dijkstra 
algorithm.Dijkstra is a greedy algorithm that has the time complexity O(|E| + 

directed graph with positive weights on the edges between the nodes. 

The algorithm finds the shortest path between the start node and the end node. When the 

algorithm starts it puts a really high number, possibly infinity, on all the nodes except the 

starting node. As seen in figure 4(a). The algorithm starts to check if any of the neighbours 

weights of the nodes in fig 4(a), which is infinity at the beginning, is lower than the starting 

nodes weight plus the weight of the edge that binds them. If the total weight is lower than the 

neighbours nodes weight it replaces it with the new lower weight, as seen in fig 4(b). Now the 

algorithm will go through all the neighbours of the new node to see if any values can be 

replaced, and so it continues. Once it has visited all the nodes it is finished. It can then 

answer with the cheapest way and which path it took to get there, see the finished version in 

fig 4(f) [2]. 

 

Figure 4. Dijkstra algorithm [9] 
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4.0 Method 
 
The work began by gathering information on the topic of graph compression. We started out 

by reading articles on current state of graph compression and how they are used today. After 

this background study we started looking for popular compression algorithms for 

compressing weighted graphs. Since it was hard for us to get a hold of compression 

algorithms presented in the different papers that we read we eventually chose to use minimal 

spanning tree (MST) as a graph compression. MST is not really considered a graph 

compression since it is a naive approach to compress a graph. MST can be seen as a type of 

extreme compression whereonly one edge for every two connected nodes are kept. This 

means MST cuts of precisely as many edges that it still preserves the connectivity of the 

graph. We chose this algorithm because it preserves all the nodes and will be easily 

compared to our own compression algorithm where we will keep more edges than the MST. 

 
To compare the MST to something else we also chose to implement our own compression 

algorithm which is described in the background under section 3.2. This algorithm as well as 

everything else that we implemented is done in JAVA. 

 

4.1 The graph generation 

The graph which is used in this report is supposed to simulate a road network graph of some 

sort. For example a delivery companies drop off points graph with edges between the 

connected drop off points and weights corresponding to the road lengths between them. This 

type of graph is also called a weighted multigraph meaning that there can be parallel edges. 

Parallel edges occur in a road graph when there are different roads going from and to the 

same places. 

 
A fairly obvious but still important note about the graph is that every node has at least one 

neighbour node and it does not exist an island of nodes that are separate from the rest of the 

graph. This means that regardless of which nodes a passenger starts in he or she can reach 

every other node in the graph.The road graph can be considered a sparse graph since there 

are a few number of edges going out from the nodes compared to the number of nodes in the 

graph. This differs from previous works where the graphs are usually dense and also with 

more nodes. 

 
The graphs which the experiments are made on is generated by code written and 

implemented by ourselves. The graph generation starts with the creation of the required 

number of nodes. It then connects node zero to node n, where n is the last node in the graph, 

in both directions. Node zero connects to node one and then node one connects to node two 

and so on. When this step is done we know that the whole graph is connected, thus we have 

no islands of nodes and every node can reach any other node in the graph. 

 
We then randomly add one to six edges from a node to another randomly chosen nodes in 

the graph. The reason for this is that we do not consider a crossroad to have more than seven 
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outgoing roads from it. The node can not have edges to itself for obvious reasons. All the 

edges are given a weight between 1-20. The procedure of making the graph is then finished. 

 
 
4.2 Other considered test results 

We could test additional properties besides the ones stated in the problem statement. Some 

examples are that the time for running the compression algorithms or the size of the graph 

when saved to file could be measured. None of these were chosen in the end for comparison. 

This is because these results will differ greatly depending on of how the algorithms were 

implemented and how we choose to store the graph. 

 
Instead the size is measured in the number of nodes and edges since this is easily 

comparable with other graphs and compressions. This is also how the authors of [5] choose 

to measure their compression ratio. 

 
 
4.3 The experiments 

The experiments are made on graphs with 10 000, 100 000 and 1 000 000 nodes. The three 

graphs were generated by our graph generator. In the paper “Compression of weighted 

graphs” [5] they used graphs with 10 000 - 200 000 nodes and therefore we thought it would 

be a good idé to use those numbers as guidelines and one even bigger than that, hence the 

graph with 1 000 000 nodes. 

 
We then began compressing these three graphs with MST and dynamic Dijkstra's 

compression. The MST naturally compresses the number of edges to |V | − 1 number of 

edges, where V is the number of nodes. Since we have back and forward edges between all 

the nodes the end sum of the edges is 2 * (|V | − 1) .The dynamic Dijkstra compressed the 

graph with 0.7 and 0.9 compression ratio, see formula 2 and algorithm 1 for this. These are 

referred to as DynDij 0.7 and DynDij 0.9 in the result section. 

 
We tried to present the results as generally as possible so it can be easily compared and that 

the hardware and algorithm implementation is of less importance. We randomly choose 20 

nodes for each graph size to run our Dijkstra's algorithm from and to. The nodes from which 

we start and end are the same for all the graphs with the same number of nodes. The shortest 

path algorithm was performed ten times for each graph to minimize the chance that a lucky 

path was found in one of the graphs. 

 
 
 
5.0 Result 
 
Next the results will be presented. The results that are given are the results we are after in 

the problem statement to answer our question whether a minimal spanning tree (MST) or 

our own compression can be used for sparse directed weighted graphs. With the 
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consideration that this will be applied to a road network graph. 

 
Firstly we present numbers for how many edges the graphs in the compressed and 
uncompressed original graphs has. These numbers are presented in figure 5 below. As canbe 
noticed the number of edges in the MST is as mentioned before (|V | 
 

Dynamic Dijkstra's compression of course have 70 and 90 percent of the number of edges in 

the original graph. The original uncompressed graph has about four times more edges than 

the number of nodes because of how the graph was generated, see 4.1. 

 

Nodes MST DynDij 0.7 DynDij 0.9 Original 

10 000 19 998 28 524 36 674 40 748 

100 000 199 998 287 380 369 488 410 542 

1 000 000 1 999 998 2 871 206 3 691 550 4 101 720 

Figure 5. Table representing the number of edges that the different compressed and 

uncompressed graph has. 

 
The results for the average distance between two nodes is represented visually in figure 6 so 

the reader can get an overview of how well the different compression algorithms worked 

compared to the original graph. In table 6 the specific numbers for the results are given. The 

distance is the average calculated distance when running Dijkstra's algorithm ten times. 

 
In figure 7 the the average distance between two nodes are represented. The percentage of 

how much the graphs differs from the original can be found in figure 7.

 
 

Figure 6. Showing the average path length when running Dijkstra’s algorithm ten times. 
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Nodes MST DynDij 0.7 DynDij 0.9 

10 000 407% 109% 100% 

100 000 404% 114% 101% 

1 000 000 798% 115% 101% 

Figure 7. Showing the path length percentage compared to the original graphs path 

lengths. The original graph values for this is of course 100%. 

 
The last results to be presented are the ones mentioned from the problem statement. Which 

was the attribute of how much time the Dijkstra algorithm needed to run on the different 

compressed graphs compared to running Dijkstra on the original graph. Again the result for 

this is first presented visually in figure 8 and then in a table with more specific numbers in 

figure 9 and 10. 

 
In figure 8 the runtime for how long the Dijkstra algorithm took to finish compared to 

running it on the original graph is given. The lower the staple is the less time it took for 

Dijkstra's algorithm to finish compared to running Dijkstra's algorithm on the original 

graph. In figure 9 we can see more specific results of how fast the Dijkstra's algorithm 

performed on the different graphs. In figure 10 the time for running the Dijkstra algorithm is 

presented. The numbers are given in how many milliseconds it took for Dijkstra's algorithm 

to finish. The results are, as mentioned earlier, an average of running the algorithm ten 

times. 

 

 
 

Figure 8. Shows the average time it took to run the Dijkstra algorithm ten times compared 

to the time it took to run the same algorithm with the same nodes on the original graph. 
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Nodes MST DynDij 0.7 DynDij 0.9 

10 000 33,5% 78,3% 93,2% 

100 000 10,8% 70,5% 84,7% 

1 000 000 2,2% 70,2% 91,3% 

Figure 9. The percentage of the running times compared to original. The original graph 

has of course a running time of 100%. 

 
 
 

Nodes MST DynDij 0.7 DynDij 0.9 Original 

10 000 5.4 12.6 15.0 16.1 

100 000 116.6 764.3 918.3 1 084.3 

1 000 000 2 284.8 73 483.3 95 583.4 104 702.0 

Figure 10. Showing the average time it took, in milliseconds, to finish running Dijkstra's 

algorithm between two randomly chosen nodes. 

6.0 Discussion 
 
A first notice when looking at the results is that the MST graph greatly differs from the 

DynDij and original graphs in both running time and minimal distance between two nodes. 

This is not a surprise and confirms our thoughts that MST would greatly speed up Dijkstra 

since it reduces the number of edges as much as possible while still keeping the nodes and 

connectivity in the graph. MST is however a very naive approach to compress the graph and 

therefore we should not be surprised when we look at the minimal distance between nodes in 

it. It does not preserve the minimal distances as well as the DynDij, but it also compresses 

the graph a lot more. 

 
The Dynamic Dijkstra's compression performs quite well when it comes to finding a path 

with minimal distance close to the original graphs distances. The difference for average 

minimal distance between two nodes in the graph is almost none (0-1%) compared to 

original for the compression with 0.9 (DynDij 0.9) and about 10-15 % for the DynDij 0.7 

compression. 

 
The running time for 10 000 nodes is so low, about 15 ms for running Dijkstra's algorithm on 

original graph, that there is no need for compressing a sparse graph like those experimented 

on. The running time could also be improved with some optimization of the Dijkstra 

algorithm. The advantage of getting a slightly faster Dijkstra's algorithm does not win over 

getting an accurate shortest path in the original graph. The same can also be said for 100 

000 nodes where the average running time is about 1000 ms or 1 second on the original 

graph. If we look at the percentages we could argue about which one is better but since the 

running times for Dijkstra's algorithm are so low even though the algorithms and data 

structures for the graph could be improved there is no reason to compress with our 
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compression on such sparse small sized graphs like the ones with 10 000 and 100 000 

nodes. 

 
It is when it comes to the graph with 1 000 000 nodes and about 4 000 000 edges that we 

can see bigger differences in runtime between the graphs. The DynDij 0.9 is around 9 % 

faster than the original but it only has about one percent difference in average path length. 

The DynDij 0.7 has 15 % longer path length and cuts the time with 30 %. While the 30 % cut 

in time is good the 15 % longer distance makes it bad for usage in real life. The MST graph 

cuts the Dijkstra's algorithm running time with 98 % but the average length is the 798 % 

longer than the original length which makes it useless for real life applications. With these 

results we think that the only one that could be used in real life would be the DynDij 0.9 

because of the low difference in average path length compared to the uncompressed graph. 

 
If the MST can be used for a road map application must be discussed. It will be a give and 

take between how much longer the minimal distance is between two nodes and how fast the 

Dijkstra's algorithm finds this path. If it is of less importance how long a person has to travel 

to reach their destination like if the trips total length is low no matter what path they take 

than MST is definitely a good choice on 1 000 000 nodes graph since it calculates the path in 

only 

2.2 % time compared to the original graph. 
 
 
6.1 Method critique 

The graph that we originally wanted to use in this report was the SL graph. As mentioned we 

could not make it work, even after several phone calls and emails. Having a real world graph 

to test on would have been better than the simulated one that we used. A mistake we did with 

the graph was that we thought we would make it work with SL and therefore we did not look 

into any other graphs before it was too late. However now afterwards when the results are 

finished the SL graph might have been too small since it only consists of 10 000 buss/train 

stations (nodes). Once we realized that we could not make it work we were anxious to get 

started with the testing and figured that we would generate the graph instead. 

 
The MST algorithm that we used is a naive way to compress a graph but it is as good lowest 

possible compression when seen to the number of edges. But the MST and our DynDij has a 

bit of different goals. The MST finds the shortest path when trying to reach all the nodes 

without visiting the same node twice and the DynDij find the shortest path between only two 

given nodes. This makes their goal a bit different and not optimal for comparison. Though 

both of the algorithms reduces the number of edges and still keeps all the nodes which makes 

it easy for us to compare how well they perform between each other. 

 
When the testing of the graphs begun we figured that ten test for each graph would suffice. 

We did get clear results but they would have been more precise if we would have tested it 

with 100 or more tests with the Dijkstra algorithm. 
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6.2 FUTURE SCOPE AND FURTHER ENHANCEMENT OF THE DISSERTATION 
 

There is a lot of scope of the evaluation that we have accomplished in our thesis; our analysis 

should be used for the motive of monitoring the unauthorized improvement of the colonies, 

safety of the trees, the agricultural planning, due to the fact in our learn about location a lot 

of agricultural land is available. Water resource planning, infrastructures planning and so 

many other areas the place analysis could be used, in our united states hyper spectral and 

very high resolution satellites will be handy in coming years so they can furnish us very 

useful data, now it is up to us how we technique it and extract the beneficial information 

from this data. 

 
7.0 CONCLUSION 
 

What we can see that if time is crucial and the minimal distances between nodes wants to be 

kept as much as possible then the Dynamic dijkstra's 0.9 compression algorithm can be used 

for sparse graph. It is however not worth the effort of compressing the graph for this purpose 

if only a few searches in the compressed graph will be performed. If a lot of searches will be 

performed in the graph the amount of time that can be saved for Dijkstra's algorithm will 

become relevant. In the end it will depend on the application and intended usage of the 

graph that will decide whether a compression is worth performing on sparse graphs or not. 

8.0 REFERENCES 
 
[1] C. Karande, K. Chellapilla and R. Andersen, Speeding up Algorithms on Compressed 

web graphs, http://dl.acm.org/citation.cfm?id=1498836, page 272-181, last updated 2009, 

doi:10.1145/1498759.1498836, accessed 7 february 2015 

 
[2] Kleinberg,Jon and Tardos,Eva. Algorithm Design. Second edition. Harlow, Pearson 

Education Limited, 2014. ISBN 978-1292023946, accessed 7 march 2015 

 
[3] Biggs, Norman.L. Discrete mathematics. Second edition. New York, Oxford 

university press inc, 2002. ISBN: 9780198507178, accessed 7 march 2015 

 
[4] F. Zhou, Graph Compression, 

https://www.cs.helsinki.fi/u/htoivone/teaching/seminarS10/reports/zhou-graph-

compression-v2 

.pdf, last updated 2010 , accessed 8 february 2015 
 

http://dl.acm.org/citation.cfm?id=1498836
https://www.cs.helsinki.fi/u/htoivone/teaching/seminarS10/reports/zhou-graph-compression-v2.pdf
https://www.cs.helsinki.fi/u/htoivone/teaching/seminarS10/reports/zhou-graph-compression-v2.pdf
https://www.cs.helsinki.fi/u/htoivone/teaching/seminarS10/reports/zhou-graph-compression-v2.pdf


How to Cite: 

Poonam and Dr. Chitamani Tiwari (Dec 2018). A complete compressing sparse graphs in dijkstra’s 
shortest path algorithm 
International Journal of Economic Perspectives,12(1), 137-153.  

Retrieved from https://ijeponline.org/index.php/journal/article 

© 2018 by The Author(s). ISSN: 1307-1637 International journal of economic perspectives is licensed under a 

Creative Commons Attribution 4.0 International License. 

Corresponding author: Poonam and Dr. Chitamani Tiwari 
Submitted: 27Oct 2018, Revised: 09 Nov 2018, Published :  Dec 2018 

152 

[5] H. Toivonen, A. Hartikainen, F. Zhou, and A. Hinkka, Compression of weighted 

graphs, https://www.cs.helsinki.fi/u/htoivone/pubs/toivonen_kdd2011.pdf , last updated 

2011, accessed 28 february 2015 

 
[6] G. Buehrer and K. Chellapilla, A Scalable Pattern Mining Approach to Web Graph 

Compression with Communities 

http://wsdm2009.org/wsdm2008.org/WSDM2008-papers/p95.pdf, last updated 2008, 

accessed 28 february 2015 

 
[7] Wikimedia Foundation inc, Graph theory 

http://en.wikipedia.org/wiki/Graph_theory, last updated feburary 2015, accessed 2 march 

2015 

 
[8] Vreda Pieterse and Paul E. Black, Sparse graph, 

http://xlinux.nist.gov/dads//HTML/sparsegraph.html, last updated 14 August 2008, 

accessed 2015-04-17 

 
[9] Arun Chauhan, School of Informatics and Computing - Indiana University, Graph 

algorithms, 

https://www.cs.indiana.edu/~achauhan/Teaching/B403/LectureNotes/10-graphalgo.html, 

last updated 2011-01-12, accessed 1 april 2015 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.cs.helsinki.fi/u/htoivone/pubs/toivonen_kdd2011.pdf
http://wsdm2009.org/wsdm2008.org/WSDM2008-papers/p95.pdf
http://en.wikipedia.org/wiki/Graph_theory
http://xlinux.nist.gov/dads/HTML/sparsegraph.html
https://www.cs.indiana.edu/~achauhan/Teaching/B403/LectureNotes/10-graphalgo.html


How to Cite: 

Poonam and Dr. Chitamani Tiwari (Dec 2018). A complete compressing sparse graphs in dijkstra’s 
shortest path algorithm 
International Journal of Economic Perspectives,12(1), 137-153.  

Retrieved from https://ijeponline.org/index.php/journal/article 

© 2018 by The Author(s). ISSN: 1307-1637 International journal of economic perspectives is licensed under a 

Creative Commons Attribution 4.0 International License. 

Corresponding author: Poonam and Dr. Chitamani Tiwari 
Submitted: 27Oct 2018, Revised: 09 Nov 2018, Published :  Dec 2018 

153 

 
 
 
 
 
 


