International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

A STUDY ON FUNCTION ALGEBRA

Varsha Agrawal, Research Scholar¹ **Dr. Alok Kumar**, Professor² Swami Vivekanand University, Sagar, M.P.^{1,2}

ABSTRACT

In this paper aim of researcher is to study on real function algebras. It is possible to associate a complex function algebra with a given real function algebra by complexifying it. This technique of complexification is often employed to study the properties of a real function algebra. A good deal of work has been done in the field of real function algebras. Kulkarni and Srinivasan have defined the Bishop decomposition for real v function algebras. We introduce the Silov decomposition for real function algebras and prove some basic properties of it.

Keywords: function algebra, real function, Hausdorff space, silov decomposition

1.1 INTRODUCTION

Let X be a compact Hausdorff space and let C(X) ($C_R(X)$ denote the set of all complex-valued (real-valued) continuous functions on X. With usual operations of addition, multiplication and the norm defined by

 $||f|| = \sup\{|f(x)|: x \in X\}$

for $f \in C(X)(C_R(X))$, $C(X)(C_R(X))$ is a complex (real) Banach algebra with identity. A function algebra on X is a closed subalgebra of C(X) which contains and separates the points of X.

A decomposition of X is a collection of disjoint closed subsets of X whose union is X. Subalgebras of C(X) ($C_R(X)$) and the decompositions of X are closely related. For example, a closed ideal of is determined by a closed subset of X. Now, if F is a closed subset of X, then we can associate with it the decomposition

 $\boldsymbol{\alpha} = |F| \mathbf{U} \{ |\mathbf{x}|, \mathbf{x} \in \mathbf{X} - F \}$

Thus every closed ideal is associated with a decomposition of X consisting of a closed set and singletonsoutside the closed set. If A is a closed subalgebra of $C_R(X)$ (aself-conjugate closed subalgebra of C(X) containing constants, then the sets of constancy of A gives a decomposition which is upper semicontinuous. Conversely, if α is an upper semicontinuous decomposition of X, then there exists a unique closed subalgebra of $C_R(X)$ containing constants whose sets of constancy are precisely the members of α [1]. This association of decompositions of X and subalgebras of $C_R(X)$ has been found very useful in the study of $C_R(X)$ as a direct sum of two subalgebras ([2], [3], [4], [5]).

The role of decompositions in the study of function algebras was highlighted by Silov [6] and more so by Bishop [7]. The Silov decomposition for a function algebra A on X consists of sets of constancy of $A_R = A \cap C_R(X)$. The Bishop decomposition for A consists of

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

^{© 2022} by The Author(s). Constructional ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives,16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

maximal sets of antisymmetry. Both these decompositions have the following crucial property:

If $f \in C(X)$ and $f|_E \in (A|_E)$ for every member E in the decomposition, then $f \in A$.

The above property is known as the (D)-property in the literature [8]. Once the importance of decompositions is recognised, it is natural to ask further questions. Some of the questions are :

- Are there decompositions, other than Silov and Bishop, associated with a function algebra which also have the (D)-property?
- Does a Bishop (Silov) decomposition have a stronger property than the (D)-property?
- How are Bishop, Silov and other decompositions related to each other? Do some of these decompositions determine the others?
- Does every member of a decomposition satisfying property such as (D)-property have any special property in relation to a function algebra? (For example, every member of Bishop decomposition of a function algebra is an intersection of peak sets).
- How are the decompositions of A and related, where 0is the algebra of Gelfand transforms of A ?
- Can the decompositions analogous to Silov and Bishop for a function algebra be defined for a function space? What are their properties?
- How about the decompositions for a real function algebra? for an algebra of vectorvalued continuous functions ?

Throughout the paper, X denotes a compact Hausdorff space, A denotes a function algebra on X, i.e., a closed subalgebra of C(X) which contains constants and separates the points -of X and A_R denotes the algebra of real-valued functions in A.

1.2 SILOV DECOMPOSITION

The Bishop decomposition was introduced by Bishop in 1961 [7] and has been studied by various authors since then ([9], [8], [10], [11]). The Silov decomposition was introduced by Silov earlier [6], but appears to have received less attention in literature. We first prove some results for Silov decomposition analogous to those known for Bishop decomposition and then give conditions under which these two decompositions are equal. Note that, in general, these decompositions are not equal ([12], [13]).

We recall some definitions

1.2.1 DEFINITIONS

(i) A subset K of X is called a set of antisymmetry for A if $f \in A$ and $f|_K$ is real-valued implies that $f|_K$ is constant. The collection of all maximal sets of antisymmetry for A forms a decomposition of X, called the Bishop decomposition for A. We denote this decomposition by K(A).

(ii) A set of constancy of A_R is called a Silov set for A. The collection of all maximal Silov sets for A is called the Silov decomposition for A and we denote it by F(A).

We shall write only K (respectively F) in place of K(A) (respectively F(A)) if it is clear from the context which function algebra A is being refered to.

Example A function algebra A is said to be antisymmetric if K(A) = (X). Hence for an antisymmetric function algebra, the Bishop and Silov decompositions coincide. But the following example shows that in general the Bishop and Silov decompositions are not equal.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

^{© 2022} by The Author(s). ((C) EXAMPLE SSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

FIGURE 1.1

Let. X be the union of a line segment F and a sequence of disjoint solid rectangles {F_n: n = 1, 2, ...} converging to F (see the Figure 1.1). Let A = P(X), the algebra of all functions in C(X) which can be uniformly approximated by polynomials in z. Then every real-valued function in A is constant on each F and hence on F. Therefore, the Silov decomposition F = {F_n : n = 1, 2,} \cup {{x} : x \in F}.

For a decomposition δ of X and a closed subset S of X, we have defined $\delta \cap S = \{E \cap S: E \in \delta \text{ and } \delta \cap S \neq \emptyset\}$. Then $\delta \cap S$ is a decomposition of S.

The following results about the Bishop decomposition can be found in [14].

1.2.2 THEOREM

Let A and B be function algebras on compact Hausdorff spaces X and Y respectively and % denote the Gelfand transform of A. Then

(i) Each $K \in K$ is a p-set for A and hence K is a closed restriction set for A;

(ii) $K(\widehat{A}) = \{ \widetilde{K}: K \in K(A), \text{ where } \widetilde{K} \text{ is the A-hull of } K \text{ and } K(A) = K(\widehat{A}) \cap X = \{ \widetilde{K} \cap X: \widetilde{K} \in K(\widehat{A}) \};$

(iii) $K(A \otimes B = K(A) \times K(B)$.

Note that by definition, $K(\widehat{A}) \cap X = \{\widetilde{K} \cap X : \widetilde{K} \in K(\widehat{A}), \widetilde{K} \cap X \neq \emptyset \text{ and hence } K(\widehat{A}) \cap X = \{\widetilde{K} \in K(\widehat{A})\}.$

We show that similar results remain valid for the Silov decomposition also.

1.2.3 THEOREM

Let A be a function algebra on X. Then each $F \in f$ is a p-set for A.

Proof Let $F \in f$ and $f \in A_R$. Then $f|_F$ is constant, say α Also, let $F_f = \{x \in X: f(x) = \alpha\}$. Then F_f is a peak set for A with $g = 1 - \frac{(f-\alpha)^2}{\|(f-\alpha)^2\|}$ as a peaking function for F_f . Since this is true for every $f \in A_R$, it is enough to show that $F = \cap \{F_f : f \in A_R\}$ Clearly, $F \subset \cap \{F_f : F \in A_R\}$ Suppose $F \subsetneq \cap \{F_f : f \in A_R\}$. Then there exists $x \in X$ such that $x \in F_f$ for all $f \in A_R$ but $x \notin F$. Hence there exists $h \in A_R$ such that $h(x) \neq h(F)$ and therefore, $x \notin F_h$ which is a contradiction. Hence $F = \cap \{F_f : f \in A_R\}$.

^{© 2022} by The Author(s). (C) INTERNET ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

1.2.4 THEOREM

Let A be a function algebra on X. Then $\mathcal{F}(\widehat{A}) = \{ \widetilde{F} : F \in f(A) \}$ and $f(A) = \mathcal{F}(\widehat{A}) \cap X = \{ \widetilde{F} \cap X : \widetilde{F} \in f(\widehat{A}) \}$.

Proof Let $F \in f(A)$. First we shall show that \tilde{F} is a set of constancy of $(\hat{A})_R$. Using [14], it can be checked that $(\hat{A})_R = (A_R)^{\wedge}$. Let $\hat{f}(A_R)^{\wedge}$ where $f \in A_R$. Then $f|_F$ is constant, say α . Let $\emptyset \in \tilde{F}$. Then there exists a representing measure μ for \emptyset which is concentrated on F [14]. Hence $\hat{f}(\emptyset) = \int_X fd\mu = \int_F fd\mu = \alpha$. Since this is true for any $\emptyset \in \tilde{F}$, \hat{f} is constant on \tilde{F} . Hence \tilde{F} is a set of constancy of $(\hat{A})_R$. So, $\tilde{F} \subset K$ for some $K \in f(\hat{A})$. Therefore, $\{\tilde{F}: F \in f(A)\} < f(\hat{A})$.

Conversely, let $G \in f((\widehat{A})$ and $G \cap X = H$. Also, let $g \in A_R$. Then $\widehat{g} \in (A_R)^{\wedge} = (\widehat{A})_R$ and hence $\widehat{g}|_G$ is constant. Therefore, $\widehat{g}|_{G \cap X} = g|_{G \cap X} = g|_H$ is constant and so, H is a set of constancy of A_R . Thus $H \subset K$ for some $K \in f(A)$. But $G = (G \cap X)^{\sim}$, as G is a p-set for \widehat{A} [14]. Hence $G = \widetilde{H} \subset \widetilde{K}$ and we get $f(\widehat{A}) < \{\widetilde{F}: F \in f(A)\}$. Thus $f(\widehat{A}) = \{\widetilde{F}: F \in f(A)\}$.

Since the members of f(A) are p-sets for A, $\tilde{F} \cap X = F$ for $F \in f(A)$ [8]. Hence $f(A) = {\tilde{F} \cap X : \tilde{F} \in f(\hat{A})} = \mathcal{F}(\hat{A}) \cap X$.

1.2.5 THEOREM

Let A and B be function algebras on X and Y respectively. Then $f(A \otimes B) = f(A) \times f(B)$.

Proof Let $F \in f(A)$ and $G \in (B)$. Also, let $f \in (A \otimes B)_R$ and (x_1, y_1) , (x_2, y_2) be in $F \times G$. Then $f_{x_1} \in B_R$ and $f_{y_2} \in A_R$, where $f_{x_1}(y) = f(x_1, y)$ ($y \in Y$) and $f_{y_2}(x) = f(x, y_2)$ ($x \in X$). So, f_{x_1} is constant on G and f_{y_2} is constant on F. Therefore, $f(x_1, y_1) = f_{x_1}(y_1) = f_{x_1}(y_2) = f(x_1, y_2) = f_{y_2}(x_1) = f_{y_2}(x_2) = f(x_2, y_2)$ and hence f is constant on $F \times G$. Thus $f(A) \times f(B) < f(A \otimes B)$.

Conversely, let $H \in f(A \otimes B)$. First we show that $\pi_1(H)$ is a set of constancy of AR, where: $X \times Y \to X$ is the projection map. Let $g \in A_R$. Then $g \otimes 1 \in (A \otimes B)_R$ and so, $g \otimes 1$ is constant on H, i.e., g is constant on $\pi_1(H)$. Thus $\pi_1(H)$ is a set of constancy of A_R . Hence $\pi_1(H) \subset F$ for some $F \in (A)$. Similarly, we can show that $\pi_2(H) \subset G$ for some $G \in (B)$, where π_2 : $X \times Y \to Y$ is the projection map. Thus $H \subset \pi_1(H) \times \pi_2(H) \subset F \times G \in (A) \times f(B)$. Hence $f(A \otimes B) < f(A) \times f(B)$.

1.2.6 REMARKS

(i) By the same argument as above, one can show that $f(A \# B) = f(A) \times f(B)$.

(ii) It is clear that $(A \otimes B)_R$, $A_R \otimes B_R$, $(A \# B)_R$ and $A_R \# B_R$ are closed sub-algebras of $C_R(X \times Y)$. Also, by the above remark, all these sub-algebras have the same sets of constancy. Hence $(A \otimes B)_R = A_R \otimes B_R = (A \# B)_R = A_R \# B_R$, by [1].

The importance of the Bishop decomposition is due to the Bishop's generalization of the Stone-Weierstrass theorem.

1.2.6 THEOREM [7] Let A be a function algebra on X and k be the Bishop decomposition for A. If $f \in (X)$ and $f|_K \in A|_K$ for every $K \in k$, then $f \in A$.

In our -terminology, it is equivalent to saying that k has the (D)-property for A. Recall that (i)) a decomposition δ of X has the (D)-property for A if $f \in C(X)$ and $f|_E \in (A|E)^-$ for every $E \in \delta$, then $f \in A$. Since k < f, (ii), f also has the (D)-property for A. On the other hand, if ℓ is a decomposition consisting of closed antisymmetric sets for A, then ℓ may not have the (D)-property for A, as the following example shows.

1.2.8 EXAMPLE Let $D = \{z \in C : |z| \le 1\}$ and $S_r = \{z \in D : |z| = r\}$ for $0 \le r \le 1$. Also, let A = A(P), the disk algebra on the unit disk, i.e., $A = \{f \in C(D) : f \text{ is analytic in the interior of } D\}$. Then each S_r , $0 \le r \le 1$, is a set of anti-symmetry for A [14]. Also, $\ell = \{S_r \ 0 \le r \le 1\}$ is a decomposition of D. Define $f : D \longrightarrow C$ by f(z) = |z|. Then $f \in C(D)$ and $f|_{Sr} = r \in A|_{Sr}$ for each r, $0 \le r \le 1$. But $f \in A$ and hence ℓ does not have the (D>-property for A.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

^{© 2022} by The Author(s). Correctional ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

The essential set E of A and k are related [14]. We shall prove that a similar relation holds between E and f.

1.2.9 PROPOSITION Let P denote the union of all singleton sets in f and E denote the essential set of A. Then E is the closure of X-P.

Proof Let \acute{P} denote the union of all singleton sets in k. Then, clearly $P \subset \acute{P}$ and so, X- \acute{P} and so $\subset X-\acute{P}$. Since $E = X-\acute{P}$ [14], $E \subset \overline{X-P}$, Conversely, let $x \in X-P$ and if possible, suppose that $x \in E$. Since $x \in X-P$, there exists a nonsingleton member F of f such that $x \in F$. Let $y \in F$, $y \neq x$. By Urysohn's lemma, there exists $f \in C_R(X)$ such that $f|_E \cup \{y\} = 0$ and f(x) = 1. Then $f \in A_R$ [14] and $f(x) \neq f(y)$, which is a contradiction, since $x, y \in F \in f$. Hence $X-P \subset E$ and since E is closed, we have $\overline{X-P} \subset E$.

We have seen that, in general, k is finer than f and there are examples where $k \neq f$. We now give conditions under which k = f.

1.2.10 THEOREM If ℓ is an u.s.c. decomposition of X having the (D)-property for A, then $f < \ell$.

Proof. Let X/ℓ denote the quotient space of X obtained by l and $q : X \to X/\ell$ be the corresponding quotient map. Then, for $f \in C_R(X/\ell)$, $f \circ q \in C_R(X)$. Also, $(f \circ q)|_S$ is constant for each $S \in \ell$. Therefore, $(f \circ q)|_S e A|_S$ for each $S \in \ell$ Since ℓ has the (D)-property for A, $f \circ q \in A$. Thus $f \circ q \in A_R$ for each $f \in C_R(X/\ell)$

Let $F \in f$ and $f \in C_R(X/\ell)$. Then f o q is constant on F, i.e., f is constant on q(F) for every $f \in C_R(X/\ell)$. Now, X/ ℓ is Hausdorff, as ℓ is u.s.c. [15]. Hence q(F) must be a singleton set and so, $F \subset S$ for some $S \in \ell$, which proves that $f < \ell$. The following corollary is immediate.

1.2.11 COROLLARY [9]. If k is u.s.c., then k = f,

It also follows from the above theorem that the Bishop decomposition determines the Silov decomposition, as the next corollary shows.

1.2.12 COROLLARY

Let A and B be function algebras on X. If k(A) = k(B), then f(A) = f(B)**Proof** Suppose k(A) = k(B). Then k(B) is finer than f(A) and hence f(A) has the (D)property for B. Also, f(A) is u.s.c. . Therefore, - f(B) is finer than f(A). By the same argument, f(A) is finer than - f(B). Hence f(A) = f(B)

The following example shows that the converse of Corollary 3.11 is not true.

1.2.13 EXAMPLE

Let I = [0,1] and D = { $z \in C : |z| \le 1$ }. Let X = { $r, z \in I \ge D : |z| \le 1^{\frac{r}{2}}$ For a fixed $r \in I$, let $X_r = \{ z \in D : (r, z) \in (XX) \text{ and } r \in I, \text{ let } f_r \text{ be defined on } x_r \text{ by } f_r(z) = f(r, z).$ Let A = { $f \in (XX) : f_r \land (X_r) \text{ for } 0 \le r \le 1$ } and B = { $f (XX) : f_r \land (X_r) \text{ for } 0 \le r \le 1$ }. Then A and B are function algebras on X. It can be checked that $f(A) = \{ \{x\} \ge x_r : 0 \le r \le 1\} = f(B) = k(B)$. Further $k(A) = \{ \{x\} \ge x_r : 0 \le r \le 1\} \cup \{ \{CO, z\} : |z| = \} [9]$. Hence f(B) = k(A) but $k(B) \ne k(A)$.

We give some additional results asserting the equality of k and f.

1.2.14 THEOREM

If & has finitely many members, then k = f.

Proof Suppose that $f = \{F_1, F_2, ..., F_n\}$. We shall show that each F_i is a set of anti-symmetry for A, which proves the result.

For F_1 and $F_{j_{A'}}^{j \pm 1}$ there exists $f_{1j} \in A_R$ such that $f_{1j} = 1$ on F_1 and $f_{1j} = 0$ on F_j . Take $f_1 = f_{12}f_{13}..., f_{1n}$. Then $f_1 \in A_R$, $f_1 = 1$ on F_1 and $f_1 = 0$ on F_j for all $j \neq 1$. Similarly, for each i

© 2022 by The Author(s). Correctional ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

International Journal of Economic Perspectives,16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

= 2, 3,..., n; there exists $f_i \in A_R$ such that $f_i = 1$ on F_j and $f_j = 0$ on F_j for all $j \neq i$.

Let $g \in A$ and $g|_{F_i}$, be real-valued. Then $h_i = gf_i$ is in A_R and hence h_i is constant on F_i . But $h_i = g$ on F_i and therefore, g is constant on F_i . Thus F_i is a set of anti-symmetry for A. This completes the proof.

Since k < f, it is immediate from that if k has finitely many members, then k = f. In fact, we shall that even when 9K has countable number of members then also k = f.

1.3 OTHER DECOMPOSITIONS

In this section, we consider decompositions of X associated with a function algebra other than those of Bishop and Silov. We study their interrelations and show that some of these decompositions determine the others. Arenson [16] and Ellis [17] have defined and discussed weakly analytic sets and weakly prime sets for A. We introduce the weakly essential, integral domain and analytic decompositions for A. A function algebra A is called an essential function algebra if X is the essential set of A. A is an integral domain if whenever f, $g \in A$ and f g = 0, then f = 0 or g = 0. A is an analytic function algebra if $f \in A$ and f = 0 on a nonempty open set in X, then f = 0.

We have already considered the Bishop and Silov decompositions in detail. For the sake of completeness and for comparing these decompositions with others, we also define below, along with other concepts, the Silov set and a set of antisymmetry for A.

For a closed subset S of X, let Ag denote the uniform closure of $A|_S$ in C(S).

1.3.1 DEFINITIONS

Let S be a closed subset of X and A be a function algebra on X.

- (1) S is said to be a weakly essential set for A if Ag is an essential function algebra.
- (2) S is said to be a Silov set for A if it is a set of constancy of A_R .
- (3) S is said to be a set of antisymmetry for A, if whenever $f \in A$ and $f|_S$ is real-valued, then $f|_S$ is constant.
- (4) S is said to be a weakly prime set for A if G is a peak set for A_S implies either G = S or the interior of G, $G^{\circ} = \emptyset$ in the peak set topology (i.e., there is no peak set H, other than S, such that $G \cup H = S$).
- (5) S is said to be a weakly analytic set for A if G is a peak set for A_S, then either G = S or the interior of G, $G^{\circ} = \emptyset$.
- (6) S is said to be an integral domain set Ci.d. set) for A if Ag is an integral domain.
- (7) S is said to be an analytic set for A if Ag is an analytic algebra. It is clear that for the disk algebra A(D), D is an analytic set.

1.3.2 PROPOSITION

Each of the above type of sets is contained in a maximal one of the same type.

Proof First we prove that a weakly essential set is contained in a maximal weakly essential set. Let F be a weakly essential set for A and $\{S_{\alpha}: \alpha \in \Lambda\}$ be the collection of all weakly essential sets for A which contain F. Also, let $S = \bigcup_{\alpha \in \Lambda} S_{\alpha}$. To show that A_{S} is an essential algebra, let I be a closed ideal of C(S) contained in A_{S} . Then $(I|_{S_{\alpha}})^{-}$ is a closed ideal contained in $A_{S_{\alpha}}$ and hence either $I|_{S_{\alpha}} = \{0\}$ or $(I|_{S_{\alpha}})^{-} = C(S_{\alpha})$, for each $\alpha \in A$. Suppose for some α , $I|_{S_{\alpha}} = \{0\}$ and for some β , $(I|_{S_{\beta}})^{-} = C(S_{\beta})$. Then $I|_{F} = \{0\}$ and also, $(I|_{F})^{-} = C(F)$, since $F \subset S_{\alpha} \cap S_{\beta}$. That is, $C(F) = \{0\}$ which is not possible. Hence for all α , either $I|_{S_{\alpha}} = \{0\}$ or $(I|_{S_{\alpha}})^{-} = C(S_{\alpha})$. If $I|_{S_{\alpha}} = \{0\}$ for all α , then $I = \{0\}$. Now, suppose $(I|_{S_{\alpha}})^{-} = C(S_{\alpha})$ for all α . Then $C(S_{\alpha}) = A_{S_{\alpha}}$, as $(I|_{S_{\alpha}})^{-} \subset A_{S_{\alpha}}$. Since $A_{S_{\alpha}}$ is an essential observed that δ_{5} has the (D)-property for A. Imitating the proof given by Ellis [12, Theorem 1] for weakly prime sets, we prove that δ_{5} has actually the (GA)-property for A.

^{© 2022} by The Author(s). (C) INTERNET ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

1.3.3 THEOREM

Let A be a function algebra on X. Then δ_5 has the (GA)-property for A. Consequently, each δ_i has the (GA)-property for A, i = 1,2,3,4.

Proof Let $\mu \in b(A^{\perp})^e$ and $S = \text{supp } \mu$. It is enough to show that S is a weakly analytic set for A. Let G be a peak set for A_S and suppose that $G^{\circ} \neq \emptyset$. Then there is a closed set H such that G \cup H = S. Let $\mu_1 = \mu|_G$ and $\mu_1 = \mu - \mu_1$. Then μ_1 and hence μ_2 are in A_S^{\perp} . Also, $\|\mu_1\| + \|\mu_2\| = \|\mu_1\|$, since μ_1 and μ_2 are singular measures. Suppose $\|\mu_1\| \neq 0 \neq \|\mu_2\|$. Then $\mu = \|\mu_1\| \frac{\mu_1}{\|\mu_1\|} + \|\mu_2\| = \|\mu_2\| \frac{\mu_2}{\|\mu_2\|}$ and $\frac{\mu_1}{\|\mu_1\|}, \frac{\mu_2}{\|\mu_2\|} \in b(A^{\perp})$ with $\|\mu_1\| + \|\mu_2\| = 1$ which is contradiction, since $\mu \in b(A^{\perp})^e$. Therefore, $\mu_1 = 0$ or $\mu_2 = 0$, i.e., S = H or G = S. But $H \neq S$, as $G^{\circ} \neq \emptyset$. Hence G = S and S is a weakly analytic set for A.

1.3.4 REMARK

Since the (GA)-property implies the (S)-property and the (D)-property, it also follows that each δ_i , $i \leq 5$, has the (S)-property and the (D)-property for A.

The following example shows that δ_7 does not have even the CD}-property for A.

1.3.5 EXAMPLE

Consider the function algebra A (ii), i.e., $A = A(D)|_S$ with $S = T \cup \{o\}$. Then we have seen that $\delta_7 = \{T, \{o\}\}$. Now, define a function g: $S \longrightarrow C$ by g(z) = |z|. Then $g \in C(S)$, $g(o) = o \in A||_{\{0\}}$ and $g|_T = 1 \in A|_T$, . But $g \in A$. Therefore, δ_7 does not have the CD)-property for A.

1.3.6 REMARK

It is proved in [14] that if a maximal function algebra A is essential, then A is analytic. Hence, by Proposition 1.3.1, if A is a maximal function algebra, then all δ_i 's coincide, i.e., $\delta_7 = \delta_6 = \delta_5 = \delta_4 = \delta_3 = \delta_2 = \delta_1$.

The results are true for all δ_i 's.

1.3.7 PROPOSITION

Let S be a CR set for a function algebra A on X. Then $\delta_i(A|_S) < \delta_i(A|_S) \cap S$ for $i \leq 7$.

Proof We have proved the result for i = 2 and 3. Fix i. First we shall show that $f_i(A|_S) < f_i(A) \cap S$. Let $F \in f_i(A|_S)$. Since $F \subset S$, it is enough to show that F is an (1)-set for A. Now, $F \in f_i(A|_S)$ implies that $((A|_S)|_F)^-$ is an (i)-algebra, i.e., $(A|_F)^-$ is an (i)-algebra and therefore, F is an (i)-set for A. Consequently, $f_i(A|_S) < f_i(A) \cap S$. Now, $\delta_i(A) \cap S$ is a decomposition of S. Also, if $F \in f_i(A|_S)$, then $F \subset K \cap S$ for some $K \in f_i(A)$. By the construction of $\delta_i(A)$, $K \subset E$ for some $E \in \delta_i(A)$. Therefore, $F \subset E \subset S$ with $E \in \delta_i(A)$. But $\delta_i(A|_S)$ is the finest decomposition of S with such property. Hence $\delta_i(A|_S) < \delta_i(A) \cap S$.

1.3.8 PROPOSITION

Let S be a CR set for A which is saturated with $\delta_i(A)$. Then $\delta_i(A|_S) = \delta_i(A) \cap S$ for $i \neq 2$. **Proof** By Proposition 1.3.7, $\delta_i(A|_S) < \delta_i(A) \cap S$. Fix i, $i \neq 2$. Since S is saturated with $\delta_i(A)$, S is saturated with $f_i(A)$ also. Therefore, $f_i(A) \cap S = \{F \in f_i(A) : F \cap S \neq \emptyset$. Let $F \in f_i(A) \cap S$, i.e., $F \in f_i(A)$ and $F \subset S$. Then $(A|_F)^-$ is an (i)-algebra. But $((A|_S)|_F)^- = (A|_F)^-$ and therefore, F is an (i)-set for $A|_S$. Hence $f_i(A) \cap S < f_i(A|_S)$.

Suppose $\delta_i(A|_S) \leq \delta_i(A) \cap S$. Let $\ell_i = \delta_i(A|_S) \cup \{E \in \delta_i(A): E \cap S = \emptyset\}$. Then ℓ_i is a decomposition of X and $\ell_i < \delta_i(A)$. Let $F \in f_i(A)$. Then either $F \subset S$ or $F \cap S = \emptyset$. If $F \subset S$, then $F \in f_i(A|_S)$ and so, $F \subset G$ for some $G \in \delta_i(A|_S)$. If $F \cap S = \emptyset$, then $F \subset E$ for some $E \in \delta_i(A)$ with $\delta \cap S = \emptyset$, since S is saturated with δ_i (A). In either case, F is contained in some member of Jand hence X.(A) -<. Therefore, $\ell_i = \delta_i(A)$ and $\delta_i(A|_S) = \delta_i(A) \cap S$.

We have seen that the above result is not true for i = 2.

Let S be a CR set for A and $I_S = \{g \in C(X) : g|_S = 0\}$. Then $A+I_S = \{f + g : f \in A, g \in I_S\}$

© 2022 by The Author(s). Comparison ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

is a function algebra on X [18]. In fact, $A+I_S = \{f \in C(X): f|_S \in A|_S$. Hence it is natural to expect that the decompositions for $A + I_S$ should be related with the corresponding decompositions for $A|_S$ and this does happen as we shall prove now.

1.3.9 PROPOSITION

Let S be a CR set for A. Then $\delta_i(A + I_S) = \delta_i(A|_S) \cup \{\{x\}: x \notin S\}$ for $1 \le i \le 7$.

Proof Since the essential set of A + I_s is the essential set of A|_s [18, Proposition 1.2.1], it is clear that $\delta_1(A + I_S) = \delta_1(A|_S) \cup \{\{x\}: x \notin S\}$ Also, $\delta_2(A + I_S) < \delta_1(A + I_S)$ and so, $\{\{x\}: x \notin S\}$. Let F ⊂ S. Then it is enough to show that $F \in \delta_2(A|_S)$ if and only if $F \in \delta_2(A + I_S)$. But that is true by Proposition 1.3.8, since $\delta_2 = f$. Hence $\delta_2(A + I_S) = \delta_2(A|_S)\{\{x\}: x \notin S\}$

Fix i (i \geq 3). Since $\delta_1(A + I_S) < \delta_2(A + I_S)$, {{x}: $x \neq S$ } $\in \delta_i(A + I_S)$. Let F \subset S. Then F is an (i)-set for A + I_S if and only if F is an (i)-set for A|_S, as (A + I_S)|_S = A|_S and F \subset S. Hence $F \in f_i(A + I_S)$ if and only if $F \in f_i(A|_S)$ and it can be proved that $\delta_i(A + I_S) = \delta_i(A|_S) \cup$ {{x}: $x \notin S$ }.

1.3.10 DEFINITIONS

(i) A decomposition δ of X is said to be of the first type if there exists only one nontrivial member in δ .

For example, the Bishop decomposition for an antisymmetric algebra is of the first type.

(ii) Let $1 \le i \le 7$. If the decomposition δ_i (A) is of the first type, then the function algebra A is called an almost (i)-algebra.

The above definitions generalize the definitions given by Tomiyama [19, Definition 1.3.10] for an antisymmetric decomposition.

1.3.11 REMARKS

(i) By Proposition 1.3.9, if S is an (i)-set for A which is also a CR set for A, then A + Ig is an almost (i) -algebra, for $1 \le i \le 7$.

(ii) By Proposition 1.3.3, every function algebra is an almost weakly essential algebra.

(iii) By Remark 1.3.6, a maximal function algebra is always an almost (i)-algebra, for $1 \le i \le 7$.

Now, we discuss the decompositions δ_i for the tensor product A $\widehat{\otimes}$ B of function algebras A and B on X and Y respectively.

1.3.12 THEOREM

Let A and B be function algebras on X and Y respectively. Then $f_i = (A \otimes B) = f_i(A) X f_i(B)$ for $2 \le i \le 7$.

Proof We have seen that $f_i(A \otimes B) = f_i(A) X f_i(B)$ for i = 2 and 3 (iii)). Let i ≥ 4 . To prove the required result, it is enough to prove the following:

 $[a_i]$ If S and T are (i)-sets for A and B respectively, then S x T is an (i) - set for A \bigotimes B, i.e., if $(A_{|_S})^-$ and $(B_{|_T})^-$ are (i)-algebras, then $(A \bigotimes B_{|_{SXT}})^-$ is an -algebra. Since $(A \bigotimes B_{|_{SXT}})^- = (A_{|_S})^- \bigotimes (B_{|_T})^-$, we shall prove that if A and B are (i)-algebras, then A \bigotimes B is an (i)-algebra.

 $[b_i]$ If G is an (i)-set for A $\widehat{\otimes}$ B, then $\pi_1(G)$ and $\pi_2(G)$ are (i)-sets for A and B respectively, where $\pi_1 : X \times Y \longrightarrow X$ and $\pi_2 : X \times Y \longrightarrow Y$ are projection maps.

Case i = 4 Let A and B be weakly prime algebras and E be a peak set for A \bigotimes B. Suppose that $E^{\circ} \neq \emptyset$ in the peak set topology, i.e., there is a peak set F, F \neq X x Y, for A \bigotimes B such that $E \cup F = X \times Y$. Let f and g be peaking functions for F and E respectively and G = (X × Y)-F. Since G is open in X x Y, there are open sets U ⊂ X and V ⊂ Y such that U x V ⊂ G. Also, g = 1 on U x V, as U x V ⊂ G ⊂ E. Fix $y_0 \in V$. Then $g_{y_0} = 1$ on U and therefore, $U ⊂ \{x \in X: g_{y_0}(x) = 1\} = S ⊂ X$. Now, if $x \notin S$, then $g_{y_0}(x) = g(x, y_0) \neq 1$ and therefore, $(x, y_0) \notin E$, i.e.,

^{© 2022} by The Author(s). (C) INTERNET ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

Submitted: 27 Feb 2023, Revised: 09 March 2022, Accepted: 18 May 2022, Published: June 2022

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

 $(x, y_0) \in F$ and so, $f_{y_o}(x) = 1$. Thus X-S $\subset \{x \in X : f_{y_o}(x) = 1\} = T \subset X$. Also, S and T are peak sets for A and S \cup T = X. Since A is a weakly prime algebra, S = X or T = X. Suppose S = X. Then $g_{y_o} = 1$ on X or g = 1 on X x { y_o }, So, g = 1 on X x V, as y_o was an arbitrary point of V. Let $(x, y) \in X \times Y$. Then $g_x = 1$ on V. By the same argument as above, $V \subset \{y' \in Y : g_x(y') = 1\}$ = $Z \subset Y$, $Y-Z \subset \{y' \in Y : f_x(y') = 1\}$ -= $W \subset Y$, $Z \cup W = Y$ and Z, W are peak sets for B. Since B is a weakly prime algebra, Z = Y or W = Y. If W = Y, then $f_x(y) = f(x, y) = 1$, i.e., f = 1 on X x Y or F = X x Y which is a contradiction. Therefore, Z = Y and so, g(x, y) = 1, i.e., g = 1 on X x Y or E = X x Y. Similarly, if T = X, then we can show that $E = X \times Y$ which shows that A $\bigotimes B$ is a weakly prime algebra and this completes the proof of $[a_4]$.

To prove $[b_4]$, let G be a weakly prime set for $A \bigotimes B$ and S be a peak set for $(A|_{\pi_1(G)})^$ with a peaking function f for S. Then $(f \bigotimes 1))|_G \in (A \bigotimes B|_G)^-$ and it can be checked that $(f \otimes 1)|_G$ is a peaking function for $(S \times Y) \cap G$, i.e., $(S \times Y) \cap G$ is a peak set for $(A \bigotimes B|_G)^-$ which is a weakly prime algebra. Therefore, either $(S \times Y) \cap G = G$ or $((S \times Y) \cap G)^\circ = \emptyset$ in the peak set topology. If $(S \times Y) \cap G = G$, then $f \otimes 1 = 1$ on G, i.e., f = 1 on $\pi_1(G)$ and so, $\pi_1(G) = S$. Now, if $S^\circ \neq \emptyset$ in the peak set topology, then there is a peak set T, $T \neq \pi_1(G)$, for $(A|_{\pi_1(G)})^$ such that $S \cup T = \pi_1(G)$. But then $(T \times Y) \cap G \neq G$: $(T \times Y) \cap G$ is a peak set for $(A \bigotimes B|_G)^$ and $((S \times Y) \cap G) \cup ((T \times Y) \cap G) = G$, i.e., $((S \times Y) \cap G)^\circ \neq \emptyset$ in the peak set topology. Thus if $((S \times Y) \cap G)^\circ = \emptyset$ in the peak set topology, then $S^\circ = \emptyset$ in the peak set topology. Therefore, we have either $S = \pi_1(G)$ or $S^\circ =$ in the peak set topology and hence $\pi_1(G)$ is a weakly prime set for A. Similarly, we can prove that $\pi_2(G)$ is a weakly prime set for B.

Case i = 5. By the same argument, we can prove $[a_5]$ and $[b_5]$.

Case i = 6. Suppose that A and B are integral domains. Let f, $g \in A \otimes B$ and $f \neq o \neq g$. Then there exist (x, y) and (r, s) in X x Y such that $f(x, y) \neq o$ and $g(r, s) \neq o$, i.e., $f_y \neq o$ and $g_s \neq o$. Also, f_y and g_s are in A which is an integral domain. Therefore, $f_y g_s \neq o$ and so, $(f_y g_s)(p) \neq o$ for some point $p \in X$. Thus $f_p(y) = f(p, y) = f_y(p) \neq o$ and $g_p(s) = g(p, s) = g_s(p) \neq 0$. Since f_p and g_p are in B and B is an integral domain, $f_p g_p \neq o$, i.e., for some $q \in Y$, $(f_p g_p)(q) \neq 0$ or $(fg)(p,q) \neq 0$. Hence fg $\neq o$ and so, A \otimes B is an integral domain which proves $[a_6]$.

To prove $[b_6]$, let G be an i.d. set for A \bigotimes B and f, $g \in (A|_{\pi_1(G)})^-$ such that $f \neq o \neq g$. Then $(f \otimes 1)|_G$ and $(g \otimes 1)|_G$ are in $(A \bigotimes B|_G)^-$ and it is clear that $(f \otimes 1)|_G \neq (g \otimes 1)|_G$. Since $(A \bigotimes B|_G)^-$ is an integral domain, $(f \otimes 1)(g \otimes 1) \neq 0$ on G and so, fg $\neq 0$. Hence $\pi_1(G)$ is an i.d. set for A. Similarly, $\pi_2(G)$ is an i.d. set for B.

Case i = 7. Finally, we prove $[a_7]$ and $[b_7]$. Assume that A and B are analytic algebras. Let $h \in A \otimes B$ be zero on a nonempty open subset G of X x Y. There are nonempty open sets $U \subset X$ and $V \subset Y$ such that $U \ge V \subset G$. Fix $y_o \in V$. Then $h_{y_o} = 0$ on U which is a nonempty open subset of X. But $h_{y_o} \in A$ which is analytic and hence $h_{y_o} = 0$ on X, i.e., h = 0 on X x $\{y_o\}$. Since y_o is an arbitrary point of V, h=0 on X x V. Now, let $(x, y) \in X \ge Y$. Then $h_x \in B$ and $h_x = 0$ on V. Thus $h_x = 0$ on Y, as $h_x \in B$ and B is analytic, i.e., $h(x, y) = h_x(y) = 0$. Hence h = 0 on X x Y and consequently, $A \otimes B$ is an analytic algebra.

To prove $[b_7]$, let G be an analytic set for A \bigotimes B and $f \in (A|_{\pi_1(G)})^-$ be zero on a nonempty open set U of $\pi_1(G)$. Then $(U \ge Y) \cap G$ is open in G, $(U \ge Y) \cap G \neq \emptyset$ and $(f \otimes 1)|_G \in (A \bigotimes B|_G)^-$ is zero on $(U \ge Y) \cap G$. Hence $(f \otimes 1)|_G = 0$, since $(A \bigotimes B|_G)^-$ an analytic algebra. Thus f = 0 on $\pi_1(G)$ and so, $\pi_1(G)$ is an analytic set for A which completes the proof of the theorem.

1.3.13 REMARKS

(i) It can be shown that for $2 \le i \le 7$, $f_i(A) \ge f_i(B) = f_i(A \otimes B)$, then $\delta_i(A \otimes B) < \delta_i(A) < \delta_i(B)$. Hence, in view of Theorem 1.3.15, we always have $\delta_i(A \otimes B) < \delta_i(A) < \delta_i(B)$ for $2 \le i \le 7$.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

^{© 2022} by The Author(s). Constructional ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

(ii) It is shown in [18] that the essential set of $A \otimes B$ is $(E_A \times Y) \cup (X \times E_B)$, where E_A and E_B denote the essential sets of A and B respectively. Thus $\delta_i(A \otimes B) = \{(E_A \times Y) \cup (X \times E_B) \cup \{(x, y) : x \notin E_A, y \notin E_B\}$. But $\delta_1(A) \times \delta_1(B) = \{E_A \times E_B\} \cup \{\{x\} \times E_B : x \notin E_B\} \cup \{E_A \times \{y\} : y \notin E_B\} \cup \{(x, y)\}: x \notin E_A, y \notin E_B\}$. Hence $\delta_1(A) \times \delta_1(B) \leq \delta_1(A \otimes B)$, if $E_A \neq X$ or $E_B \neq Y$.

If A is a function algebra on X, then \hat{A} , the Gelfand transform of A, is a function algebra on m(A). To investigate the relation between decompositions of X and of m(A), we need the following proposition due to Hayashi [8, Theorem 1.5]. We recall that a JL closed subset E of X is a p-set for A if $\pi \in A^{\perp}$ implies that $\mu_E \in A^{\perp}$.

1.3.14 PROPOSITION

There is a one-to-one correspondence between peak sets (p-sets) E for A and peak sets (p-sets) F for \hat{A} such that $\tilde{E} = F$ and $F \cap X = E$. Further, $(\bigcap_{\alpha} E_{\alpha})^{\sim} = \bigcap_{\alpha} E_{\alpha}^{\sim}$ where E_{α} is a peak set Cp-set} for A for each α .

1.3.15 THEOREM

A function algebra A is an (i)-algebra on X if and only if \hat{A} is an (i)-algebra on m(A), for i = 1,2,3,4 and 6.

Proof It is well known that the essential set $E_{\hat{A}}$ of \hat{A} is $E_A \cup (m(A)-X)$, where E_A denotes the essential set of A [14]. Therefore, $E_A = X$ if and only if $E_{\hat{A}} = m(A)$, i.e., A is an essential algebra if and only if \hat{A} is an essential algebra or equivalently A is a weakly essential algebra if and only if \hat{A} is a weakly essential algebra.

By Theorem 1.2.5 and Theorem 1.2.3(ii), A is an (i)-algebra if and only if \hat{A} is an (i)-algebra, for i = 2 and 3.

Let i = 4. By Proposition 1.3.14, a subset S of X is a peak set for A if and only if \tilde{S} is a peak set for \hat{A} . Also, S = X if and only if $\tilde{S} = m(A)$, since $\tilde{S} \cap X = S$. So, to prove that A is weakly prime if and only if \hat{A} is weakly prime, it is enough to show that S^o = \emptyset in the peak set topology if and only if $(\tilde{S})^{\circ} = \emptyset$ in the peak set topology. Suppose that $(\tilde{S})^{\circ} \neq \emptyset$ in the peak set topology. Then there is a peak set T, T $\neq X$, for A such that $\tilde{S} \cup \tilde{T} = m(A)$. But then S \cup T = X. Thus S^o $\neq \emptyset$ in the peak set topology. Similarly, we can show that if S^o $\neq \emptyset$ in the peak set topology, then $(\tilde{S})^{\circ} \neq \emptyset$ in the peak set topology.

Let A be an integral domain and \hat{f} , $\hat{g} \in \hat{A}$ with $\hat{f} \neq 0 \neq \hat{g}$, where f, $g \in A$. Then $f \neq o \neq g$, since A $||\hat{f}|| = ||f||$. But A is an integral domain and so, fg $\neq o$ Therefore, $(fg)^{\wedge} \neq 0$, i.e., $\hat{f}\hat{g} \neq 0$ and hence A is an integral domain. Conversely, assume that \hat{A} is an integral domain and f, $g \in A$ such that $f \neq o \neq g$. Then \hat{f} , $\hat{g} \in \hat{A}$ and $\hat{f} \neq 0 \neq \hat{g}$ So, $\hat{f}\hat{g} \neq 0$, i.e., $(fg)^{\wedge} \neq 0$ and therefore, fg $\neq o$. Hence A is an integral domain.

1.3.16 COROLLARY

Let A be a function algebra on X. Suppose that the members of $f_i(\hat{A})$ are p-sets for \hat{A} for i = 4 and 6. Then $f_i(\hat{A}) = \{\tilde{S} : S \in f_i(A)\}$ and $f_i(A) = f_i(\hat{A}) \cap X = \{\tilde{S} \cap X : \tilde{S} \in f_i(\hat{A})\}$ for i = 1, 2, 3, 4 and 6.

Proof Since $E_{\hat{A}} = E_A \cup (m(A)-X)$ is a p-set for \hat{A} , $(E_{\hat{A}} \cap X)^{\sim} = E_{\hat{A}}$ i.e., $E_{\hat{A}} = E_{\hat{A}}$. Also, if $x \in X$, then $x \notin E_A$ if and only if $x \notin E_{\hat{A}}$. Therefore, $\delta_i(\hat{A}) = f_1(\hat{A}) = \{E_{\hat{A}}\} \cup \{\{x\} : x x \notin E_A\}$.

By Theorem 1.2.5 and Theorem 1.2.3(ii), the result is true for i = 2 and 3. Let i = 4 or 6. Then S is an (i)-set for A iff $(A_{|_S})^-$ is an (i)-algebra iff $((A_{|_S})^-)^{\wedge}$ is an (i)-algebra iff $(\hat{A}_{|_S})^-$ is an (i)-algebra, (since $((A_{|_S})^-)^{\wedge} = ((A_{|_S})^{\wedge})^- = (\hat{A}_{|_S})^-$ iff \tilde{S} is an (i)-set for \hat{A} .

Let $S \in f_i(A)$. Then $\tilde{S} \subset H$ for some $H \in f_i(\hat{A})$. By our assumption H is a p-set for \hat{A} . Hence, by Proposition 1.3.17, $H = \tilde{G}$, where $G = H \cap X$ is a p-set for A. Now, $S \subset \tilde{S} \cap X \subset H \cap X = G$ which is an (i)-set for A, as $\tilde{G} \in f_i(\hat{A})$, Therefore: S = G and $\tilde{S} \in f_i(A)$. Conversely, let \tilde{G}

© 2022 by The Author(s). Correctional ISSN: 1307-1637 International journal of economic perspectives is licensed under a Creative Commons Attribution 4.0 International License.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

 $\in f_i(\hat{A})$ for some p-set G for A. Then G is an (i)-set for A and so, $G \subset S$ for some $S \in f_i(A)$. But then \tilde{S} is an (i)-set for \hat{A} and $\tilde{G} \subset \tilde{S}$. Therefore, $\tilde{G} = \tilde{S}$ and $G = \tilde{G} \cap X = \tilde{S} \cap X$. Thus $G \subset S \subset \tilde{S}$ $\cap X = G$, i.e., $G = S \in f_i(A)$. Hence $f_i(\hat{A}) = \{\tilde{S} : S \in f_i(A)\}$ and $\in f_i(A) = f_i(\hat{A}) \cap X$. Since every $\tilde{S} \in f_i(\hat{A})$ intersects X, $f_i(\hat{A}) \cap X = \{\tilde{S} \cap X : \tilde{S} \in f_i(\hat{A})\}$.

1.3.17 REMARK

Let i = 4 or 6. Suppose that members of $\delta_i(A)$ and $f_i(\hat{A})$ are p-sets for A and \hat{A} respectively. Since $f_i(A) = f_i(\hat{A}) \cap X$, $\delta_i(A) < f_i(\hat{A}) \cap X$. Let $(\delta_i(A))^{\sim} = \{E_i^{\sim} : E_i \in \delta_i(A)$. Since members of $\delta_i(A)$ are p-sets for A, $(\delta_i(A))^{\sim}$ is a decomposition of m(A). For $S_i \in f_i(A)$, $S_i^{\sim} \subset E_i^{\sim}$ for some $E_i \in \delta_i(A)$. But $S_i^{\sim} \in f_i(\hat{A})$ and therefore, $\delta_i(\hat{A}) < (\delta_i(A))^{\sim}$. Thus $\delta_i(\hat{A}) \cap X < (\delta_i(A))^{\sim} \cap X = \delta_i(A)$. Hence $\delta_i(A) = \delta_i(\hat{A}) \cap X$.

We do not know whether A is weakly analytic implies that \hat{A} is weakly analytic or \hat{A} is weakly analytic implies that A is weakly analytic.

1.3.18 EXAMPLE

Consider the function algebra $A = A(D)|_{s}$ of Example 1.3.5(ii). Then we know that $\delta_{7} = \{T, \{0\}\}\)$ and hence A is not analytic. However, $\hat{A} = A(D)$ which is analytic. For an example of a function algebra A which is analytic but \hat{A} is not analytic, we refer to [20, MR 81], 46083],

In section 1, we have proved that the Bishop decomposition determines the Silov decomposition (Corollary 1.2.13). We prove that some of the decompositions δ_i will determine the others. We use the following ideas of Sidney [11].

Let A be a function algebra on X and f(A) denote the Silov decomposition for A. We denote an ordinal number by σ . Define inductively, the decompositions $\ell_{\sigma} = \ell_{\sigma}(A)$ of X into closed subsets as follows:

(i) $\ell_o = \{X\};$

(ii) $\ell_{\sigma+1} = \{F : F \in f(A|_E), E \in \ell_{\sigma} > \text{and} \}$

(iii) if σ is a limit ordinal, then $\ell_{\sigma} = \{E_{\sigma} : E_{\sigma} = \bigcap_{\sigma, < \sigma} E_{\sigma'}, E_{\sigma} \in \ell_{\sigma}\}$ i

Sidney [11] has observed the following results: (S₁) The above inductive process of taking decompositions terminates at some point. Let $\sigma(A)$ denote the first ordinal number σ such that $\ell_{\sigma+1} = \ell_{\sigma}$.

(S₂) $\ell_{\sigma(A)} = k(A)$, the Bishop decomposition for A.

(S₃) Each $E \in \ell_{\sigma}$ is a p-set for A and it is the union of members of k(A) for every ordinal σ .

Now, we are ready to prove the result regarding the determination of one type of decomposition by the other.

1.3.19 PROPOSITION

Let A and B be function algebras on X. Then $\delta_4(A) = \delta_4(B) \Rightarrow \delta_3(A) = \delta_3(B) \Rightarrow \delta_2(A) = \delta_2(B) \Rightarrow \delta_1(A) = \delta_1(B)$ and $\delta_5(A) = \delta_5(B) \Rightarrow \delta_3(A) = \delta_3(B)$.

Proof. Suppose $\delta_2(A) = \delta_2(B)$. It is enough to show that $E_A = E_B$, where $E_A(E_B)$ denote the essential set of A(B). Let P₂(A) and P₂(B) denote the set of all singleton elements of $\delta_2(A)$ and $\delta_2(B)$ respectively. Then $E_A = \overline{X - P_2(A)}$ and $E_B = \overline{X - P_2(B)}$, by Proposition 1.2.10. Since $\delta_2(A) = \delta_2(B)$, we have P₂(A) = P₂(B). Therefore, $E_A = E_B$ and hence $\delta_2(A) = \delta_2(B)$.

We have shown that $\delta_3(A) = \delta_3(B) \Rightarrow \delta_2(A) = \delta_2(B)$ (Corollary 1.2.13),

Assume that $\delta_4(A) = \delta_4(B)$. First we shall show that $\delta_2(A) = \delta_2(B)$. For this, it suffices to show that $A_R = B_R$. Let $f \in A_R$. Then $f|_F$ is constant for each $F \in \delta_2(A)$, Since $\delta_4(B) = \delta_4(A)$ $< \delta_2(A)$, $f|_H$ is constant for each $H \in \delta_4(B)$. So, $f|_H \in B|_H$ for each $H \in \delta_4(B)$. Since $\delta_4(B)$ has the (D)-property for B, $f \in B$. Thus $A_R \subset B_R$. Similarly, $B_R \subset A_R$ and hence $\delta_2(A) = \delta_2(B)$. Now, we use Sidney's technique. Accordingly, $\delta_2(A) = \delta_2(B)$ is equivalent to saying that $\ell_1(A) =$ $\ell_1(B)$. Suppose $\ell_{\sigma}(A) = \ell_{\sigma}(B)$. We want to show that $\ell_{\sigma+1}(A) = \ell_{\sigma+1}(B)$. Since $\ell_{\sigma+1}(A) = \{F \in f(A|_E) : E \in \ell_{\sigma}(A)\}$, it is enough to show that $(A|_E)_R = (B|_E)_R$ for $E \in \ell_{\sigma}(A) = \ell_{\sigma}(B)$. Let $E \in$ $\ell_{\sigma}(A)$ and $f \in (A|_E)_R$. By (S₃), E is saturated with k(B) and hence with $\delta_4(B)$, since $\delta_4(B) <$ $\delta_3(B) = k(B)$. Let $H \in \delta_4(B) = \delta_4(A)$ and $H \subset E$. Since $\delta_4(A) < \delta_3(A)$ and (S_3) holds, there © 2022 by The Author(s). Commuticational License.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

exists $K \in \delta_3(A)$ such that $H \subset K \subset E$. It follows that $f|_H$ is constant. Thus $f \in C(E)$ and $f|_H \in (B|_E)|_H$ for each $H \in \delta_4(B)$, $H \subset E$. Also, by (S_3) , E is a p-set for B. Since $\delta_4(B)$ has the (S)-property for B, $\delta_4(B) \cap E$ has the (D)-property for $B|_E$ and hence $f \in (B|_E)_R$ and $(A|_E)_R \subset (B|_E)_R$. Similarly, $(B|_E)_R \subset (A|_E)_R$, and so $\ell_{\sigma+1}(A) = \ell_{\sigma+1}(B)$. Let σ' be limit ordinal and suppose that $\ell_{\sigma}(A) = \ell_{\sigma}(B)$ for all $\sigma = \sigma'$. Then $E \in \ell_{\sigma'}(A)$ iff $E = \bigcap_{\sigma < \sigma'} \{E_{\sigma} : E_{\sigma} \in \ell_{\sigma}(A)\}$ iff $E \in \bigcap_{\sigma < \sigma'} \{E_{\sigma} : E_{\sigma} \in \ell_{\sigma}(B)\}$ iff $E \in \ell_{\sigma'}(B)$. Hence, for each ordinal σ , we have $E \ell_{\sigma}(A) = \ell_{\sigma}(B)$. So, $\delta_3(A) = \delta_3(B)$.

By the same argument, we can prove that $\delta_5(A) = \delta_5(B) \Rightarrow \delta_3(A) = \delta_3(B)$.

1.3.20 REMARK

The decomposition δ_7 does not determine any other decomposition. For, let $A = A(D)|_S$ of Example 4.4.5(ii) and $B = A + I_T$. Then $\delta_7(A) = \{T, \{o\}\}$ and $\delta_i(A) = \{S\}$ for each i < 7. Also, $\delta_i(B) = \delta_i(A|_T) \cup \{x\} x \notin T$ for all $i \le 7$. Therefore, $\delta_i(B) = \{T, \{o\}\}$ for $i \le 7$. Hence $\delta_7(A) = \delta_7(B) = \{T, \{o\}\}$. But $\delta_i(B) = \{T, \{o\}\} < \{S\} = \delta_i(A)$ for i < 7.

1.4 CONCLUSIONS

In this paper, we deal with certain decompositions of a compact Hausdorff space X associated with a function algebra A. The most well known decompositions are those of Bishop and Silov. While the two decompositions coincide in case of many known function algebras, there are function algebras where the two differ. It is natural to look for conditions under which these decompositions are coincident. Section 1 is devoted to the study of this problem. In section 2, we study the Bishop and Silov decompositions for restriction algebras. The last section is devoted to the study of several other decompositions such as analytic, weakly analytic, weakly prime etc. In addition to proving certain properties of these decompositions, we discuss these decompositions for the tensor product. Finally, we show that some of these decompositions determine some of the others.

REFERENCES

- 1. Z. Semadeni, Banach spaces of continuous functions, Vol.I., PWN-Polish Scientific Pub., Warszawa, 1971.
- 2. S. Fisher, The decomposition of C^CCfO into the direct sum of subalgebras, J. Funct. Anal. 31(1979),218-223.
- 3. R. D. Mehta and M. H. Vasavada, On the direct sum decomposition of an algebra of continuous functions, Bull. Aust. Math. Soc. 32(1985),69-71.
- 4. R. D. Mehta and M. H. Vasavada, Algebra direct sum decomposition of CRoo, Proc. Amer. Math. Soc. 98(1)(1986),71-74
- 5. R. D. Mehta and M. H. Vasavada, Algebra direct sum decomposition of Cr(X), Proc. Amer. Math. soc. 100(1)(1987), 123-126.
- 6. G. E. Silov, On rings of functions with uniform convergence, Ukrain Mat. Z. 3(1951), 404-411.
- 7. E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math. 11(1961), 777-783.
- 8. M. Hayashi, On the decompositions of function algebras, Hokkaido Math. J. 1(1974), 1-22.
- 9. I. Glicksberg, Measures orthogonal to algebras and sets of antisymmetry, Trans. Amer. Math. Soc. 105 (1962), 415-435.
- 10. S. Machado, On Bishop's generalization of the Weierstrass-Stone theorem, Indag. Math. 39(3) (1977), 218-224.
- 11. S. J. Sidney, On the Silov and Bishop decompositions of a uniform algebra, Duke Math. J. 39(1972), 551-559.
- 12. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.

Corresponding author: Varsha Agrawal and Dr. Alok Kumar

International Journal of Economic Perspectives, 16(6), 106-118 Retrieved from https://ijeponline.org/index.php/journal

- D. Sarason, The Silov and Bishop decompositions of rf°+ C, conference on Harmonic Analysis in Honour of Antoni Zygmund, Vol II, Wadswork Belment, California (1983), 461-474.
- 14. G. M. Leibowitz, Lectures on Complex Function Algebras, Scott Foresman and Co., Illinois, 1970.
- 15. S. Kaplan, The Bidual of CCX), Elsevier Science Pub. B.V.North-Holland, 1985.
- 16. E. L. Arenson, Certain properties of algebras of continuous functions, Soviet Math. Dokl. 7(1966), 1522-1524.
- 17. A. J. Ellis, Weakly prime compact convex sets and uniform algebras, Math. Proc. Camb. Phil. Soc. 81(1977), 225-232.
- 18. R. D.Mehta, Tensor product of Banach algebras and algebras of functions, Ph.D.Thesis, Sardar Patel University, 1977.
- 19. J. Tomiyama, Some remarks on antisymmetric decompositions of function algebras, Tohoku Math. J. 16(1964), 340-344.
- 20. P. V. Paramonov and N. V. Scerbing, Examples of nonanalytic uniform algebras, Vestnik Moskov Univ. Ser I. Mat. Meh. (1980), no 4, 26-28, 29(MR 81j, 46083).