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ABSTRACT 
In this paper aim of researcher is to study on real 

function algebras. It is possible to associate a complex function 
algebra with a given real function algebra by complexifying it. 
This technique of complexification is often employed to study 
the properties of a real function algebra. A good deal of work 
has been done in the field of real function algebras. Kulkarni 
and Srinivasan have defined the Bishop decomposition for real 
v function algebras. We introduce the Silov decomposition for 
real function algebras and prove some basic properties of it. 
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1.1 INTRODUCTION 

Let X be a compact Hausdorff space and let C(X) (CR(X) denote the set of all 
complex-valued ( real-valued) continuous functions on X. With usual operations of 
addition, multiplication and the norm defined by 

 f = sup  f x  : x ∈ X  

for f ∈ C (X) (CR(X)), C(X) (CR(X)) is a complex (real) Banach algebra with 
identity. A function algebra on X is a closed subalgebra of C(X) 
which contains and separates the points of X. 

A decomposition of X is a collection of disjoint closed subsets of X 
whose union is X. Subalgebras of C(X) (CR(X)) and the decompositions 
of X are closely related. For example, a closed ideal of is determined by 
a closed subset of X. Now, if F is a closed subset of X, then we can 
associate with it the decomposition  

 α =   F  U   x , x ∈ X − F  

Thus every closed ideal is associated with a decomposition of X consisting 
of a closed set and singletons outside the closed set. If A is a closed subalgebra of CR(X) 
(a self-conjugate closed subalgebra of C(X) containing constants, then the sets 
of constancy of A gives a decomposition which is upper semicontinuous. 
Conversely, if α is an upper semicontinuous decomposition of X, then there exists a 
unique closed subalgebra of CR(X) containing constants whose sets of constancy are 
precisely the members of α [1]. This association of decompositions of X and 
subalgebras of CR(X) has been found very useful in the study of CR(X) as a direct sum 
of two subalgebras ([2], [3], [4], [5]). 

The role of decompositions in the study of function algebras was highlighted by Silov 
[6] and more so by Bishop [7]. The Silov decomposition for a function algebra A on X 
consists of sets of constancy of AR = A ∩CR(X). The Bishop decomposition for A consists of 
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maximal sets of antisymmetry. Both these decompositions have the following crucial 
property: 

If f ∈ C(X) and f|E ∈ (A|E) for every member E in the decomposition, then f ∈ A. 
The above property is known as the (D)-property in the literature [8]. Once the 

importance of decompositions is recognised, it is natural to ask further questions. Some of 
the questions are : 

 Are there decompositions, other than Silov and Bishop, associated with a function 
algebra which also have the (D)-property? 

 Does a Bishop (Silov) decomposition have a stronger property than the (D)-property? 

 How are Bishop, Silov and other decompositions related to each other? Do some of 
these decompositions determine the others? 

 Does every member of a decomposition satisfying property such as (D)-property have 
any special property in relation to a function algebra? (For example, every member of 
Bishop decomposition of a function algebra is an intersection of peak sets). 

 How are the decompositions of A and A  related, where A  0is the algebra of Gelfand 
transforms of A ? 

 Can the decompositions analogous to Silov and Bishop for a function algebra be 
defined for a function space? What are their properties? 

 How about the decompositions for a real function algebra? for an algebra of vector-
valued continuous functions ? 
Throughout the paper, X denotes a compact Hausdorff space, A denotes a function 

algebra on X, i.e., a closed subalgebra of C(X) which contains constants and separates the 
points -of X and AR denotes the algebra of real-valued functions in A. 
 

1.2 SILOV DECOMPOSITION 
The Bishop decomposition was introduced by Bishop in 1961 [7] and has been 

studied by various authors since then ([9], [8], [10], [11]). The Silov decomposition was 
introduced by Silov earlier [6], but appears to have received less attention in literature. We 
first prove some results for Silov decomposition analogous to those known for Bishop 
decomposition and then give conditions under which these two decompositions are equal. 
Note that, in general, these decompositions are not equal ([12], [13]). 

We recall some definitions  

1.2.1 DEFINITIONS 

(i) A subset K of X is called a set of antisymmetry for A if f ∈ A and f|K is real-valued implies 
that f|K is constant. The collection of' all maximal sets of antisymmetry for A forms a 
decomposition of X, called the Bishop decomposition for A. We denote this decomposition 
by K(A). 
(ii) A set of constancy of AR is called a Silov set for A. The collection of all maximal Silov sets 
for A is called the Silov decomposition for A and we denote it by F(A). 

We shall write only K (respectively F) in place of K(A) (respectively F(A)) if it is clear 
from the context which function algebra A is being refered to. 
Example A function algebra A is said to be antisymmetric if K(A) = (X). Hence for an 
antisymmetric function algebra, the Bishop and Silov decompositions coincide. But the 
following example shows that in general the Bishop and Silov decompositions are not equal.  
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FIGURE 1.1 

Let. X be the union of a line segment F and a sequence of disjoint solid rectangles {Fn: 
n = 1,2, . . . } converging to F (see the Figure 1.1). Let A = P(X), the algebra of all functions in 
C(X) which can be uniformly approximated by polynomials in z. Then every real-valued 
function in A is constant on each F and hence on F. Therefore, the Silov decomposition F = 
{Fn : n = 1,2,……} ∪ {{x} : x ∈ F}. 

For a decomposition δ of X and a closed subset S of X, we have defined δ ∩ S = {E 
∩S: E ∈ δ and δ ∩ S ≠ ∅}. Then δ ∩ S is a decomposition of S. 

The following results about the Bishop decomposition can be found in [14]. 

1.2.2 THEOREM  
Let A and B be function algebras on compact Hausdorff spaces X and Y respectively and % 
denote the Gelfand transform of A. Then 
(i) Each K ∈ K is a p-set for A and hence K is a closed restriction set for A; 

(ii) K(A ) = { K : K ∈ K(A), where K  is the A-hull of K and K(A) = K(A ) ∩ X = {K  ∩ X: K  ∈
K(A )}; 

(iii) K(A ⊗  B = K(A) x K(B). 

Note that by definition, K(A ) ∩ X = {K  ∩ X : K  ∈ K A  , K  ∩ X ≠ ∅ and hence K(A ) ∩ X 

= {K ∈ K A  }. 
We show that similar results remain valid for the Silov decomposition also. 
 

1.2.3 THEOREM  
Let A be a function algebra on X. Then each F ∈ f is a p-set for A. 

Proof Let F ∈ f and f ∈ AR. Then f|F is constant, say α Also, let Ff = {x ∈ X: f(x) = α }. Then Ff 

is a peak set for A with g = 1 – 
 f−α 2

  f−α 2 
 as a peaking function for Ff. Since this is true for every f 

∈ AR, it is enough to show that F = ∩ {Ff : f ∈  AR   Clearly, F ⊂ ∩  Ff ∶ F ∈  AR     Suppose F ⊊ 
∩  Ff ∶  f ∈   AR . Then there exists x ∈ X such that x ∈ Ff  for all f ∈ AR  but x ∉ F. Hence there 
exists h ∈ AR  such that h(x) ≠ h F ) and therefore, x ∉ Fh  which is a contradiction. Hence F = 
∩ { Ff  : f   ∈  AR  . 
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1.2.4 THEOREM  
Let A be a function algebra on X. Then ℱ (A ) = { F  : F ∈ f(A) } and f(A) = ℱ (A ) ∩ X = 

{F ∩ X: F ∈ f(A )}. 

Proof Let F ∈ f(A). First we shall show that F  is a set of constancy of (A )R. Using [14], it can 

be checked that (A )R = (AR)^. Let f  (AR)^ where f ∈ AR. Then f|F is constant, say α. Let ∅ ∈ F . 

Then there exists a representing measure μ for ∅ which is concentrated on F [14]. Hence f (∅) 

= ∫ fdμ
X

 =∫ fdμ
F

= α. Since this is true for any ∅ ∈ F , f  is constant on F . Hence F  is a set of 

constancy of (A )R. So, F ⊂ K for some K ∈ f(A ). Therefore, {F : F ∈ f(A)} < f(A ). 

Conversely, let G ∈ f((A ) and G ∩ X = H. Also, let g ∈ AR . Then g  ∈ (AR)^ = (A )R and 
hence g |G is constant. Therefore, g |G∩X = g|G∩X = g|H  is constant and so, H is a set of 

constancy of AR. Thus H ⊂ K for some K ∈ f(A). But G = (G ∩ X)~ , as G is a p-set for A  [14]. 

Hence G = H  ⊂ K  and we get  f A  < {F : F ∈ f(A)}. Thus f A  = {F : F ∈ f(A)}. 

Since the members of f(A) are p-sets for A, F ∩ X = F for F ∈ f(A) [8]. Hence f(A) = 

{F ∩ X: F ∈ f(A )} = ℱ (A ) ∩ X. 
 

1.2.5 THEOREM  

Let A and B be function algebras on X and Y respectively. Then f(A ⨂  B) = f(A) x f(B). 

Proof Let F ∈ f(A) and G ∈ (B). Also, let f ∈ (A ⨂  B)R and (x1, y,), (x2, y2) be in F x G. Then fx1
 

∈ BR and  fy2
 ∈ AR, where fx1

(y) = f(x1, y) (y ∈ Y) and fy2
(x) = f(x, y2) (x ∈ X). So, fx1

 is constant 

on G and fy2
 is constant on F. Therefore, f(x1, y1) = fx1

(y1) = fx1
(y2) = f(x1, y2) = fy2

(x1) = fy2
(x2) 

= f(x2, y2) and hence f is constant on F x G. Thus f(A) x f(B) < f(A ⨂  B). 

Conversely, let H ∈ f(A ⨂  B). First we show that π1(H) is a set of constancy of AR, 

where: X x Y ⟶ X is the projection map. Let g ∈ AR. Then g ⨂  1 ∈ (A ⨂  B)R and so, g ⨂ 1 is 
constant on H, i.e., g is constant on π1(H). Thus π1(H) is a set of constancy of AR. Hence 
π1 H ⊂ F for some F ∈ (A). Similarly, we can show that π2 H ⊂ G for some G ∈ (B), where 
π2: X x Y ⟶Y is the projection map. Thus H ⊂ π1 H  x π2 H  ⊂ F x G ∈ (A) x f(B). Hence f(A 

⨂  B) < f(A) x f(B). 
 

1.2.6 REMARKS  
(i) By the same argument as above, one can show that f(A # B) = f(A) x f(B). 

(ii) It is clear that (A ⨂  B)R, AR ⨂  BR, (A # B)R and AR # BR are closed sub-algebras of CR(X x 
Y). Also, by the above remark, all these sub-algebras have the same sets of constancy. Hence 

(A ⨂  B)R = AR ⨂  BR = (A # B)R = AR # BR, by [1]. 
The importance of the Bishop decomposition is due to the Bishop’s generalization of 

the Stone-Weierstrass theorem. 
 

1.2.6 THEOREM [7] Let A be a function algebra on X and k be the Bishop 

decomposition for A. If f ∈ (X) and f|K ∈ A|K for every K ∈ k, then f ∈ A. 
In our -terminology, it is equivalent to saying that k has the (D)-property for A. Recall 

that (i)) a decomposition δ of X has the (D)-property for A if f ∈ C(X) and f|E
 ∈ (A|E)− for 

every E ∈ δ, then f ∈ A. Since k < f, (ii), f also has the (D)-property for A. On the other hand, 
if ℓ is a decomposition consisting of closed antisymmetric sets for A, then ℓ may not have the 
(D)-property for A, as the following example shows. 

 

1.2.8 EXAMPLE Let D = {z ∈ C : |z| ≤ 1} and Sr = {z ∈ D : |z| = r} for 0 ≤ r ≤ 1. Also, 

let A = A(P), the disk algebra on the unit disk, i.e., A = {f ∈ C(D) : f is analytic in the interior 
of D}. Then each Sr, 0 ≤ r ≤ 1, is a set of anti-symmetry for A [14]. Also, ℓ = {Sr 0 ≤ r ≤ 1} is a 
decomposition of D. Define f : D —-> C by f(z) = |z| . Then f ∈ C(D) and f|Sr  = r ∈ A|Sr  for 
each r, 0 ≤ r ≤ 1. But f ∈ A and hence ℓ does not have the (D>-property for A. 
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The essential set E of A and k are related [14]. We shall prove that a similar relation 
holds between E and f. 

 

1.2.9 PROPOSITION Let P denote the union of all singleton sets in f and E denote 
the essential set of A. Then E is the closure of X-P. 

Proof Let P  denote the union of all singleton sets in k. Then, clearly P⊂ P  and so, X-P  and so 

⊂ X-P . Since E = X-P  [14], E ⊂ X − P       ,. Conversely, let x ∈ X-P and if possible, suppose that x 
∈ E. Since x ∈ X-P, there exists a nonsingleton member F of f  such that x ∈ F. Let y ∈ F, y ≠ 
x. By Urysohn’s lemma, there exists f ∈ CR (X) such that f|E   ∪{y}= 0 and f(x) = 1. Then f ∈ AR 
[14] and f(x) ≠ f(y), which is a contradiction, since x, y e F ∈ f. Hence X-P ⊂ E and since E is 
closed, we have X − P        ⊂ E. 

We have seen that, in general, k is finer than f and there are examples where k ≠ f. 
We now give conditions under which k = f. 

 

1.2.10 THEOREM If ℓ is an u.s.c. decomposition of X having the (D)-property for A, 

then f < ℓ. 
Proof. Let X/ℓ denote the quotient space of X obtained by l and q : X →X/ ℓ be the 
corresponding quotient map. Then, for f ∈ CR (X/ ℓ), f o q ∈ CR (X). Also, (f o q)| S is constant 
for each S ∈ ℓ. Therefore, (f o q)|S e A|S for each S ∈ ℓ  Since ℓ has the (D)-property for A, f o q 
∈ A. Thus f o q ∈ AR for each f ∈ CR(X/ ℓ) 

Let F ∈ f and f ∈ CR(X/ℓ). Then f o q is constant on F, i.e., f is constant on q(F) for 
every f ∈ CR (X/ ℓ). Now, X/ ℓ is Hausdorff, as ℓ is u.s.c. [15]. Hence q(F) must be a singleton 
set and so, F ⊂ S for some S ∈ ℓ, which proves that  f < ℓ. 
The following corollary is immediate. 
 

1.2.11 COROLLARY [9]. If  k  is u.s.c., then k = f, 
It also follows from the above theorem that the Bishop decomposition determines the 

Silov decomposition, as the next corollary shows. 
 

1.2.12 COROLLARY  
Let A and B be function algebras on X. If k(A) = k(B), then f(A)  = f(B) 
Proof Suppose  k(A) = k(B). Then k(B) is finer than  f(A) and hence f(A) has the (D)-
property for B. Also, f(A)  is u.s.c. . Therefore, - f(B) is finer than f(A). By the same argument, 
f(A) is finer than - f(B). Hence f(A)  = f(B) 

The following example shows that the converse of Corollary 3.11 is not true. 
 

1.2.13 EXAMPLE  

Let I = [0,1] and D = { z  ∈  C : |z| ≤ 1 }, Let X ={ r ,z) ∈  I x D : | z | ≤ 1
𝑟

2
 } For a fixed r ∈ I,let 

𝑋𝑟  = { z ∈ D : (r ,z) ∈ (XX)  and r ∈ I, let 𝑓𝑟  be defined on 𝑥𝑟   by  𝑓𝑟(z) = f(r ,z). Let A = { f ∈ 
(XX) : 𝑓𝑟   A(𝑋𝑟) for 0 ≤ r ≤ 1}  and  B = { f (XX) : 𝑓𝑟  (𝑋𝑟) for 0  ≤  r ≤ 1 }. Then A and B are 
function algebras on X. It can be checked that f(A) = { {x} x 𝑥𝑟  : 0  ≤  r ≤  1} = f(B) = k(B). 
Further ,k(A) = { {x} x 𝑥𝑟  : 0  ≤  r ≤  1} U { {C0, z} : |z| = } [9]. Hence f(B) = k(A) but k(B) ≠ 
k(A). 

We give some additional results asserting the equality of k and f. 
 

1.2.14 THEOREM  
If & has finitely many members, then k = f. 
Proof Suppose that f = {F1, F2,...,Fn}. We shall show that each Fi is a set of anti-symmetry for 
A, which proves the result. 

For 𝐹1 and 𝐹𝑗 𝐴′

′𝑗±1 there exists 𝑓1𝑗  ∈ AR such that 𝑓1𝑗 = 1 on 𝐹1 and 𝑓1𝑗 = 0 on 𝐹𝑗 . Take 

𝑓1 = 𝑓12𝑓13..... 𝑓1𝑛 . Then 𝑓1 ∈ 𝐴𝑅 , 𝑓1 = 1 𝑜𝑛  𝐹1 and 𝑓1 = 0 on 𝐹𝑗  for all j ≠ 1. Similarly, for each i 
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= 2, 3,..., n; there exists 𝑓𝑖  ∈ AR such that 𝑓𝑖  = 1 on 𝐹𝑗  and 𝑓𝑗  = 0 on 𝐹𝑗  for all j ≠ i. 

Let g ∈ A and g|𝐹𝑖
, be real-valued. Then 𝑖  = g𝑓𝑖  is in AR and hence 𝑖  is constant on 𝐹𝑖 . 

But 𝑖  = g on 𝐹𝑖  and therefore, g is constant on 𝐹𝑖 . Thus 𝐹𝑖  is a set of anti-symmetry for A. 
This completes the proof. 

Since k < f, it is immediate from that if k has finitely many members, then k = f. In 
fact, we shall that even when 9K has countable number of members then also k = f. 
 

1.3 OTHER DECOMPOSITIONS 

In this section, we consider decompositions of X associated with a function algebra 
other than those of Bishop and Silov. We study their interrelations and show that some of 
these decompositions determine the others. Arenson [16] and Ellis [17] have defined and 
discussed weakly analytic sets and weakly prime sets for A. We introduce the weakly 
essential, integral domain and analytic decompositions for A. A function algebra A is called 
an essential function algebra if X is the essential set of A. A is an integral domain if whenever 
f, 𝑔 ∈ 𝐴 and f g = 0, then f = 0 or g = 0. A is an analytic function algebra if 𝑓 ∈ 𝐴 and f = 0 on 
a nonempty open set in X, then f = 0. 

We have already considered the Bishop and Silov decompositions in detail. For the 
sake of completeness and for comparing these decompositions with others, we also define 
below, along with other concepts, the Silov set and a set of antisymmetry for A. 

For a closed subset S of X, let Ag denote the uniform closure of A|S in C(S). 
 

1.3.1 DEFINITIONS  
Let S be a closed subset of X and A be a function algebra on X. 

(1) S is said to be a weakly essential set for A if Ag is an essential function algebra. 
(2) S is said to be a Silov set for A if it is a set of constancy of AR. 
(3) S is said to be a set of antisymmetry for A, if whenever 𝑓 ∈ 𝐴 and f|S is real-valued, 

then f|S is constant. 
(4) S is said to be a weakly prime set for A if G is a peak set for AS implies either G = S or 

the interior of G, G° = ∅ in the peak set topology (i.e., there is no peak set H, other 
than S, such that G ∪ H = S). 

(5) S is said to be a weakly analytic set for A if G is a peak set for AS, then either G = S or 
the interior of G, G° = ∅. 

(6) S is said to be an integral domain set Ci.d. set) for A if Ag is an integral domain. 
(7) S is said to be an analytic set for A if Ag is an analytic algebra. 

It is clear that for the disk algebra A(D), D is an analytic set. 
 

1.3.2 PROPOSITION  
Each of the above type of sets is contained in a maximal one of the same type. 
Proof First we prove that a weakly essential set is contained in a maximal weakly essential 
set. Let F be a weakly essential set for A and  𝑆𝛼 :𝛼 ∈ ∧  be the collection of all weakly 
essential sets for A which contain F. Also, let 𝑆 =  𝑆𝛼

−−−
𝛼∈∧ . To show that AS is an essential 

algebra, let I be a closed ideal of C(S) contained in AS. Then  𝐼|𝑆𝛼  
−

 is a closed ideal 

contained in 𝐴𝑆𝛼  and hence either I|𝑆𝛼  = {0} or  𝐼|𝑆𝛼  
−

= 𝐶(𝑆𝛼), for each 𝛼 ∈ 𝐴. Suppose for 

some 𝛼, 𝐼|𝑆𝛼  = {0} and for some 𝛽,  𝐼|𝑆𝛽  
−

= 𝐶(𝑆𝛽). Then I|F = {0} and also,  𝐼|𝐹 
− = 𝐶(𝐹), 

since F ⊂ 𝑆𝛼  ∩ 𝑆𝛽  . That is, C(F) = {0} which is not possible. Hence for all 𝛼, either 𝐼|𝑆𝛼  = {0} 

or  𝐼|𝑆𝛼  
−

= 𝐶(𝑆𝛼). If 𝐼|𝑆𝛼  = {0} for all 𝛼, then I = {0}. Now, suppose  𝐼|𝑆𝛼  
−

= 𝐶(𝑆𝛼) for all 𝛼. 

Then 𝐶(𝑆𝛼) = 𝐴𝑆𝛼 , as  𝐼|𝑆𝛼  
−

 ⊂ 𝐴𝑆𝛼  . Since 𝐴𝑆𝛼  is an essential observed that 𝛿5 has the (D)-

property for A. Imitating the proof given by Ellis [12, Theorem 1] for weakly prime sets, we 
prove that 𝛿5 has actually the (GA)-property for A. 
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1.3.3 THEOREM  
Let A be a function algebra on X. Then 𝛿5 has the (GA)-property for A. Consequently, each 𝛿𝑖  
has the (GA)-property for A, i = 1,2,3,4.  
Proof Let 𝜇 ∈ 𝑏 𝐴⊥ 𝑒  and S = supp 𝜇. It is enough to show that S is a weakly analytic set for 
A. Let G be a peak set for AS and suppose that G°≠ ∅. Then there is a closed set H such that G 

∪ H = S. Let 𝜇1 = 𝜇|𝐺  and 𝜇1 = 𝜇 − 𝜇1. Then 𝜇1 and hence 𝜇2 are in 𝐴𝑆
⊥  . Also,  𝜇1 +  𝜇2 =

 𝜇 , since 𝜇1 and 𝜇2 are singular measures. Suppose  𝜇1 ≠ 0 ≠  𝜇2 .  Then 𝜇 =  𝜇1 
𝜇1

 𝜇1 
+

 𝜇2 
𝜇2

 𝜇2 
 𝑎𝑛𝑑 

𝜇1

 𝜇1 
,

𝜇2

 𝜇2 
∈ 𝑏 𝐴⊥  𝑤𝑖𝑡  𝜇1 +  𝜇2 = 1 which is contradiction, since 𝜇 ∈

𝑏 𝐴⊥ 𝑒 . Therefore, 𝜇1 = 0 or 𝜇2 = 0, i.e.,  S = H or G = S. But H ≠ S, as G°≠ ∅. Hence G = S 
and S is a weakly analytic set for A.  
 

1.3.4 REMARK  
Since the (GA)-property implies the (S)-property and the (D)-property, it also follows 

that each 𝛿𝑖 , 𝑖 ≤ 5, has the (S)-property and the (D)-property for A. 
The following example shows that 𝛿7 does not have even the CD}-property for A. 
 

1.3.5 EXAMPLE  
Consider the function algebra A (ii), i.e., A = A(D)|S with S = T ∪{0}. Then we have seen that 
𝛿7 = {T, {0}}. Now, define a function g: S —> C by g(z) = |z|. Then 𝑔 ∈ 𝐶(𝑆), g(0) = 0 ∈ A||{0} 

and g|T = 1 ∈A|T, . But g ∈ A. Therefore, 𝛿7 does not have the CD)-property for A. 
 

1.3.6 REMARK  
It is proved in [14] that if a maximal function algebra A is essential, then A is analytic. Hence, 
by Proposition 1.3.1, if A is a maximal function algebra, then all 𝛿𝑖 ’ s coincide, i.e., 𝛿7 = 𝛿6= 𝛿5 
= 𝛿4 = 𝛿3 = 𝛿2 = 𝛿1. 

The results are true for all 𝛿𝑖 ’s. 
 

1.3.7 PROPOSITION  

Let S be a CR set for a function algebra A on X. Then 𝛿𝑖(A|S) < 𝛿𝑖(A|S) ∩ S for i ≤ 7. 
Proof We have proved the result for i = 2 and 3. Fix i. First we shall show that 𝑓𝑖 𝐴|𝑆 <
𝑓𝑖(𝐴) ∩ 𝑆. Let F ∈ 𝑓𝑖 𝐴|𝑆 . Since F ⊂ S, it is enough to show that F is an (1)-set for A. Now, F ∈ 

𝑓𝑖 𝐴|𝑆  implies that   𝐴|𝑆 |𝐹 
−

 is an (i)-algebra, i.e.,  𝐴|𝐹 
− is an (i)-algebra and therefore, F 

is an (i)-set for A. Consequently, 𝑓𝑖 𝐴|𝑆  < 𝑓𝑖(𝐴) ∩ 𝑆. Now, 𝛿𝑖(𝐴) ∩ 𝑆 is a decomposition of S. 
Also, if F ∈ 𝑓𝑖 𝐴|𝑆 , then F ⊂ K ∩ S for some K∈ 𝑓𝑖 𝐴 . By the construction of 𝛿𝑖(A), K ⊂ E for 
some E ∈ 𝛿𝑖(𝐴). Therefore, F ⊂ E ⊂ S with E ∈ 𝛿𝑖(𝐴). But 𝛿𝑖(𝐴|𝑆) is the finest decomposition 
of S with such property. Hence 𝛿𝑖(𝐴|𝑆) < 𝛿𝑖(𝐴) ∩ 𝑆.  
 

1.3.8 PROPOSITION  
Let S be a CR set for A which is saturated with 𝛿𝑖(𝐴). Then 𝛿𝑖(𝐴|𝑆) = 𝛿𝑖(𝐴) ∩ 𝑆 for i ≠ 2.  
Proof By Proposition 1.3.7, 𝛿𝑖(𝐴|𝑆) < 𝛿𝑖(𝐴) ∩ 𝑆. Fix i, i ≠ 2. Since S is saturated with 𝛿𝑖(𝐴), S 
is saturated with 𝑓𝑖 𝐴  also. Therefore, 𝑓𝑖 𝐴 ∩ 𝑆 = {F ∈  𝑓𝑖 𝐴 :𝐹 ∩ 𝑆 ≠ ∅. Let 𝐹 ∈ 𝑓𝑖(𝐴) ∩ 𝑆, 

i.e., 𝐹 ∈ 𝑓𝑖(𝐴) and F ⊂ S. Then  𝐴|𝐹 
− is an (i)-algebra. But    𝐴|𝑆 |𝐹 

−
=  𝐴|𝐹 

− and 

therefore, F is an (i)-set for 𝐴|𝑆 . Hence 𝑓𝑖 𝐴 ∩ 𝑆 < 𝑓𝑖(𝐴|𝑆). 
Suppose 𝛿𝑖(𝐴|𝑆) ≦ 𝛿𝑖(𝐴) ∩ 𝑆. Let ℓ𝑖 = 𝛿𝑖(𝐴|𝑆) ∪ {E ∈ 𝛿𝑖(𝐴): E ∩ S = ∅}. Then ℓ𝑖   is a 

decomposition of X and ℓ𝑖 < 𝛿𝑖(𝐴). Let 𝐹 ∈ 𝑓𝑖(𝐴). Then either 𝐹 ⊂ 𝑆 𝑜𝑟 𝐹 ∩ 𝑆 = ∅. If 𝐹 ⊂ 𝑆, 
then 𝐹 ∈ 𝑓𝑖(𝐴|𝑆) and so, 𝐹 ⊂ 𝐺 for some G ∈ 𝛿𝑖(𝐴|𝑆). If 𝐹 ∩ 𝑆 = ∅, then 𝐹 ⊂ 𝐸 for some E ∈ 
𝛿𝑖(𝐴) with  𝛿 ∩ 𝑆 = ∅, since S is saturated with  𝛿𝑖  (A). In either case, F is contained in some 
member of Jand hence X.(A) -<. Therefore,  ℓ𝑖 = 𝛿𝑖(𝐴) and 𝛿𝑖(𝐴|𝑆) = 𝛿𝑖(𝐴) ∩ 𝑆. 

We have seen that the above result is not true for i = 2.  
Let S be a CR set for A and IS = 𝑔 ∈ 𝐶 𝑋 :𝑔|𝑆 = 0 . Then A+IS = {f + g : 𝑓 ∈ 𝐴, 𝑔 ∈ 𝐼𝑆} 
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is a function algebra on X [18]. In fact, A+IS = {𝑓 ∈ 𝐶 𝑋 : 𝑓|𝑆 ∈  𝐴|𝑆. Hence it is natural to 
expect that the decompositions for A + IS should be related with the corresponding 
decompositions for A|S and this does happen as we shall prove now. 
 

1.3.9 PROPOSITION  
Let S be a CR set for A. Then 𝛿𝑖 𝐴 + 𝐼𝑆 = 𝛿𝑖 𝐴|𝑆 ∪ { 𝑥 : 𝑥 ∉ 𝑆} for 1 ≤ i ≤ 7. 
Proof Since the essential set of A + IS is the essential set of A|S [18, Proposition 1.2.1], it is 

clear that 𝛿1(𝐴 + 𝐼𝑆) =  𝛿1 𝐴|𝑆 ∪   𝑥 : 𝑥 ∉ 𝑆  Also, 𝛿2(𝐴 + 𝐼𝑆)< 𝛿1(𝐴 + 𝐼𝑆) and so, {{x}:x ∉ 𝑆}. 

Let F ⊂ S. Then it is enough to show that 𝐹 ∈ 𝛿2(𝐴|𝑆) if and only if 𝐹 ∈ 𝛿2(𝐴 + 𝐼𝑆). But that is 
true by Proposition 1.3.8, since 𝛿2 = 𝑓. Hence 𝛿2 𝐴 + 𝐼𝑆 = 𝛿2(𝐴|𝑆){{x}: x ∉ 𝑆} 

Fix i (i ≥ 3). Since 𝛿1 𝐴 + 𝐼𝑆 < 𝛿2(𝐴 + 𝐼𝑆), {{x}:x ≠ 𝑆} ∈ 𝛿𝑖(𝐴 + 𝐼𝑆). Let F ⊂ S. Then F 
is an (i)-set for A + IS if and only if F is an (i)-set for A|S, as (A + IS)|𝑆  = A|S and F ⊂ S. Hence 
𝐹 ∈ 𝑓𝑖(𝐴 + 𝐼𝑆) if and only if 𝐹 ∈ 𝑓𝑖(𝐴|𝑆) and it can be proved that 𝛿𝑖 𝐴 + 𝐼𝑆 = 𝛿𝑖 𝐴|𝑆 ∪

  𝑥 : 𝑥 ∉ 𝑆 .  
 

1.3.10 DEFINITIONS  
(i) A decomposition 𝛿 of X is said to be of the first type if there exists only one nontrivial 
member in 𝛿. 

For example, the Bishop decomposition for an antisymmetric algebra is of the first 
type. 
(ii) Let 1 ≤ i ≤ 7. If the decomposition 𝛿𝑖  (A) is of the first type, then the function algebra A is 
called an almost (i)-algebra.  

The above definitions generalize the definitions given by Tomiyama [19, Definition 
1.3.10] for an antisymmetric decomposition. 
 

1.3.11 REMARKS  
(i) By Proposition 1.3.9, if S is an (i)-set for A which is also a CR set for A, then A + Ig is an 
almost (i) -algebra, for 1 ≤ i ≤ 7. 
(ii) By Proposition 1.3.3, every function algebra is an almost weakly essential algebra. 
(iii) By Remark 1.3.6, a maximal function algebra is always an almost (i)-algebra, for 1 ≤ i ≤ 
7. 

Now, we discuss the decompositions 𝛿𝑖  for the tensor product A ⊗  B of function 
algebras A and B on X and Y respectively. 
 

1.3.12 THEOREM  
Let A and B be function algebras on X and Y respectively. Then 

𝑓𝑖 =  A ⊗  B = 𝑓𝑖 A  𝑋 𝑓𝑖 𝐵 𝑓𝑜𝑟 2 ≤ 𝑖 ≤ 7.  

Proof We have seen that 𝑓𝑖 A ⊗  B = 𝑓𝑖 A  𝑋 𝑓𝑖 𝐵   for i = 2 and 3 (iii)). Let i ≥ 4. To prove 

the required result, it is enough to prove the following: 

[𝑎𝑖] If S and T are (i)-sets for A and B respectively, then S x T is an (i) - set for A ⊗  B, i.e. , if 

 𝐴|𝑆 
−

 and  𝐵|𝑇 
−

are (i)-algebras, then  A ⊗  B|SXT  
−

 is an -algebra. Since  A ⊗  B|SXT  
−

 = 

 𝐴|𝑆 
−

 ⊗   𝐵|𝑇 
−

, we shall prove that if A and B are (i)-algebras, then A ⊗  B is an (i)-algebra. 

[𝑏𝑖] If G is an (i)-set for A ⊗  B, then 𝜋1(G) and 𝜋2(G) are (i)-sets for A and B respectively, 
where 𝜋1 : X x Y --► X and 𝜋2 : X x Y —► Y are projection maps. 

Case i = 4 Let A and B be weakly prime algebras and E be a peak set for A ⊗  B. Suppose 

that E°≠ ∅ in the peak set topology, i.e., there is a peak set F, F ≠ X x Y, for A ⊗  B such that 
E ∪ F = X x Y. Let f and g be peaking functions for F and E respectively and G = (X x Y)-F.  
Since G is open in X x Y, there are open sets U ⊂ X and V ⊂ Y such that U x V ⊂ G. Also, g = 1 

on U x V, as U x V ⊂ G ⊂ E. Fix  𝑦0 ∈ 𝑉. Then 𝑔𝑦𝑜  = 1 on U and therefore, 𝑈 ⊂  𝑥 ∈

𝑋:𝑔𝑦𝑜
 𝑥 = 1 = 𝑆 ⊂ 𝑋. Now, if x ∉ S, then 𝑔𝑦𝑜  (x) = g(x, y0) ≠1 and therefore, (x, 𝑦0) ∉ E, i.e., 
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(x, 𝑦0) ∈ F and so, 𝑓𝑦𝑜  (x) = 1. Thus X-S ⊂ {x ∈ X : 𝑓𝑦𝑜  (x) = 1} = T ⊂ X. Also, S and T are peak 

sets for A and S ∪ T = X. Since A is a weakly prime algebra, S = X or T = X. Suppose S = X. 
Then 𝑔𝑦𝑜  = 1 on X or g = 1 on X x {y0}, So, g = 1 on X x V, as y0 was an arbitrary point of V. 

Let (x, y) ∈ X x Y. Then gx = 1 on V. By the same argument as above, V ⊂ {𝑦′  ∈ Y : 𝑔𝑥  (𝑦′ ) = 1} 
= Z ⊂ Y, Y-Z ⊂ {y' ∈ Y :  𝑓𝑥  (y') = l}-=W ⊂ Y,  Z ∪ W = Y and Z, W are peak sets for B. Since B 
is a weakly prime algebra, Z = Y or W = Y. If W = Y, then 𝑓𝑥(y) = f(x, y) = 1, i.e., f = 1 on X x Y 
or F = X x Y which is a contradiction. Therefore, Z = Y and so, g(x, y) = 1, i.e., g = 1 on X x Y 

or E = X x Y. Similarly, if T = X, then we can show that E = X x Y which shows that A ⊗  B is a 
weakly prime algebra and this completes the proof of [𝑎4]. 

To prove [𝑏4], let G be a weakly prime set for A ⊗  B and S be a peak set for  𝐴|𝜋1(𝐺) 
−

 

with a peaking function f for S. Then (f ⨂ 1))|𝐺  ∈  (A ⊗  B|G )− and it can be checked that (f ® 

1)|𝐺  is a peaking function for (S x Y) ∩ G, i.e., (S x Y) ∩ G is a peak set for (A ⊗  B|G )− which 
is a weakly prime algebra. Therefore, either (S x Y) ∩ G = G or ((S x Y) ∩ G)° = ∅ in the peak 
set topology. If (S x Y) ∩ G = G, then f ⨂ 1 = 1 on G, i.e., f = 1 on 𝜋1(G) and so, 𝜋1(G) = S. 

Now, if S°≠ ∅ in the peak set topology, then there is a peak set T, T ≠  𝜋1(G), for  𝐴|𝜋1(𝐺) 
−

 

such that S ∪ T = 𝜋1(G). But then (T x Y) ∩ G ≠ G: (T x Y) ∩ G is a peak set for (A ⊗  B|G )− 
and ((S x Y) ∩ G) ∪ ((T x Y) ∩ G) = G, i.e. , ((S x Y) ∩ G)°≠ ∅  in the peak set topology. Thus if 
((S x Y) ∩ G)° = ∅ in the peak set topology, then S° = ∅ in the peak set topology. Therefore, 
we have either S = 𝜋1(G) or S° =   in the peak set topology and hence 𝜋1(G) is a weakly prime 
set for A. Similarly, we can prove that 𝜋2(G) is a weakly prime set for B. 

Case i = 5. By the same argument, we can prove [𝑎5] and [𝑏5]. 

Case i = 6. Suppose that A and B are integral domains. Let f, g ∈ A ⊗  B and f ≠ 0 ≠ g. 
Then there exist (x, y) and (r, s) in X x Y such that f(x, y) ≠ 0 and g(r, s) ≠ 0, i.e., 𝑓𝑦 ≠ 0 and 

𝑔𝑠  ≠ 0. Also, 𝑓𝑦  and 𝑔𝑠  are in A which is an integral domain. Therefore, 𝑓𝑦𝑔𝑠 ≠ 0 and so, 

(𝑓𝑦𝑔𝑠)(𝑝) ≠ 0 for some point p ∈ X. Thus 𝑓𝑝 𝑦 = 𝑓 𝑝,𝑦 = 𝑓𝑦(𝑝) ≠ 0 and 𝑔𝑝 𝑠 = 𝑔 𝑝, 𝑠 =

𝑔𝑠(𝑝) ≠ 0. Since 𝑓𝑝  and 𝑔𝑝  are in B and B is an integral domain, 𝑓𝑝𝑔𝑝 ≠ 0, i.e., for some q ∈ Y, 

(𝑓𝑝𝑔𝑝)(𝑞) ≠ 0 or (𝑓𝑔)(𝑝, 𝑞) ≠ 0. Hence fg ≠ 0 and so, A  ⊗  B is an integral domain which 

proves [𝑎6]. 

To prove [𝑏6], let G be an i.d. set for A  ⊗  B and f,  𝑔 ∈  𝐴|𝜋1(𝐺) 
−

 such that f ≠ 0 ≠ g. 

Then (f ⨂ 1)|𝐺  and (𝑔 ⨂ 1)|𝐺  are in (A ⊗  B|G )− and it is clear that (𝑓⨂ 1)|𝐺 ≠ (𝑔 ⨂ 1)|𝐺 . 

Since (A ⊗  B|G )− is an integral domain, (𝑓 ⨂ 1)(𝑔 ⨂ 1) ≠ 0 on G and so, fg ≠ 0. Hence 
𝜋1(G) is an i.d. set for A. Similarly, 𝜋2(G) is an i.d. set for B. 

Case i = 7. Finally, we prove [𝑎7] and [𝑏7].  Assume that A and B are analytic algebras. 

Let h ∈ A  ⊗  B be zero on a nonempty open subset G of X x Y. There are nonempty open sets 
U ⊂ X and V ⊂ Y such that U x V ⊂ G. Fix  𝑦𝑜  ∈ 𝑉. Then 𝑦𝑜  = 0 on U which is a nonempty 

open subset of X. But  𝑦𝑜 ∈ 𝐴 which is analytic and hence 𝑦𝑜  = 0 on X, i.e., h = 0 on X x 

{y0}. Since y0 is an arbitrary point of V, h=0 on X x V. Now, let (x, y) ∈ X x Y. Then 𝑥 ∈ 𝐵 
and hx = 0 on V. Thus hx = 0 on Y, as 𝑥 ∈ 𝐵 and B is analytic, i.e. , h(x, y) = hx(y) = 0. Hence 

h = 0 on X x Y and consequently, A  ⊗  B is an analytic algebra. 

To prove [𝑏7], let G be an analytic set for A  ⊗  B and 𝑓 ∈  𝐴|𝜋1(𝐺) 
−

be zero on a 

nonempty open set U of 𝜋1(G). Then (U x Y) ∩ G is open in G, (U x Y) ∩ G ≠ ∅ and (𝑓⨂ 1)|𝐺  

∈  A  ⊗  B|G 
−

 is zero on (U x Y) ∩ G. Hence (𝑓⨂ 1)|𝐺  = 0, since  A  ⊗  B|G 
−

 an analytic 

algebra. Thus f = 0 on 𝜋1(G) and so, 𝜋1(G) is an analytic set for A which completes the proof 
of the theorem.  

 

1.3.13 REMARKS 

(i) It can be shown that for 2 ≤ i ≤ 7, 𝑓𝑖(𝐴) x 𝑓𝑖(𝐵) = 𝑓𝑖(𝐴 ⊗ 𝐵), then 𝛿𝑖 𝐴 ⊗ 𝐵 <

𝛿𝑖 𝐴 < 𝛿𝑖(𝐵). Hence, in view of Theorem 1.3.15, we always have 𝛿𝑖 𝐴 ⊗ 𝐵 < 𝛿𝑖 𝐴 <

𝛿𝑖(𝐵) for 2 ≤ i ≤ 7. 
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(ii) It is shown in [18] that the essential set of 𝐴 ⊗ 𝐵 is (EA x Y) ∪ (X x EB), where EA and 

EB denote the essential sets of A and B respectively. Thus 𝛿𝑖 𝐴 ⊗ 𝐵  = {(EA x Y) ∪ (X x 

EB) U {(x, y) :  x ∉ EA , y ∉ EB}. But  𝛿1 𝐴  x 𝛿1 𝐵  = {EA x EB} U ({x} x EB : x ∉ EB} U 

{EA x {y} : y ∉ EB} U {(x, y)}: x ∉ EA,  y ∉ EB}. Hence 𝛿1 𝐴  x 𝛿1 𝐵  ≦ 𝛿1 𝐴 ⊗ 𝐵 , if EA 

≠ X or EB ≠ Y. 

If A is a function algebra on X, then 𝐴 , the Gelfand transform of A, is a function 
algebra on m(A). To investigate the relation between decompositions of X and of m(A), we 
need the following proposition due to Hayashi [8, Theorem 1.5]. We recall that a JL closed 
subset E of X is a p-set for A if 𝜋 ∈ 𝐴⊥  implies that  𝜇𝐸 ∈ 𝐴⊥ . 
 

1.3.14 PROPOSITION  
There is a one-to-one correspondence between peak sets (p-sets) E for A and peak 

sets (p-sets) F for 𝐴  such that 𝐸 = 𝐹 and F ∩ X = E. Further,  𝐸𝛼𝛼  ~ =  𝐸𝛼
~

𝛼  where 𝐸𝛼 is a 
peak set Cp-set} for A for each 𝛼. 
 

1.3.15 THEOREM  
A function algebra A is an (i)-algebra on X if and only if 𝐴  is an (i)-algebra on m(A), 

for i = 1,2,3,4 and 6. 

Proof It is well known that the essential set 𝐸𝐴  of 𝐴  is EA ∪ (m(A)-X), where EA denotes the 
essential set of A [14]. Therefore, EA = X if and only if 𝐸𝐴 = m(A), i.e., A is an essential algebra 

if and only if 𝐴  is an essential algebra or equivalently A is a weakly essential algebra if and 

only if 𝐴  is a weakly essential algebra. 

By Theorem 1.2.5 and Theorem 1.2.3(ii), A is an (i)-algebra if and only if 𝐴  is an (i)-
algebra, for i = 2 and 3. 

Let i = 4. By Proposition 1.3.14, a subset S of X is a peak set for A if and only if 𝑆  is a 

peak set for 𝐴 . Also, S = X if and only if 𝑆  = m(A), since 𝑆  ∩ X = S. So, to prove that A is 

weakly prime if and only if 𝐴  is weakly prime, it is enough to show that S° = ∅ in the peak set 

topology if and only if (𝑆 )° = ∅ in the peak set topology. Suppose that (𝑆 )°≠ ∅ in the peak set 

topology. Then there is a peak set T, T ≠ X, for A such that 𝑆  ∪ 𝑇  = m(A). But then S ∪ T = X. 
Thus S°≠ ∅ in the peak set topology. Similarly, we can show that if S°≠ ∅ in the peak set 

topology, then (𝑆 )° ≠ ∅ in the peak set topology.  

Let A be an integral domain and 𝑓 , 𝑔  ∈ 𝐴  with 𝑓 ≠ 0 ≠ 𝑔 , where f, g ∈ A. Then f ≠ 0 ≠ 

g, since A ||𝑓 || = ||f||. But A is an integral domain and so, fg ≠ 0 Therefore, (𝑓𝑔)∧ ≠ 0, i.e., 

𝑓 𝑔 ≠ 0 and hence A is an integral domain. Conversely, assume that 𝐴  is an integral domain 

and f, g ∈ A such that f ≠0 ≠g. Then 𝑓 , 𝑔  ∈ 𝐴  and 𝑓 ≠ 0 ≠ 𝑔  So, 𝑓 𝑔 ≠ 0, i.e., (𝑓𝑔)∧ ≠ 0 and 
therefore, fg ≠ 0. Hence A is an integral domain. 

 

1.3.16 COROLLARY  
Let A be a function algebra on X. Suppose that the members of 𝑓𝑖 𝐴    are p-sets for 𝐴  

for i = 4 and 6. Then 𝑓𝑖 𝐴   = {𝑆  : S ∈ 𝑓𝑖 𝐴 } and 𝑓𝑖 𝐴  = 𝑓𝑖 𝐴   ∩ X = {𝑆  ∩ X : 𝑆  ∈ 𝑓𝑖 𝐴  } for i = 

1, 2, 3, 4 and 6. 

Proof Since 𝐸𝐴  = EA ∪ (m(A)-X) is a p-set for 𝐴 ,  𝐸𝐴  ∩  𝑋 ~ = 𝐸𝐴  i.e., 𝐸𝐴
~ = 𝐸𝐴 . Also, if x ∈ X, 

then x ∉ EA  if and only if x ∉ 𝐸𝐴 . Therefore, 𝛿𝑖 𝐴  = 𝑓1 𝐴  = {𝐸𝐴
~} U {{x} : x x ∉ EA }. 

By Theorem 1.2.5 and Theorem 1.2.3(ii), the result is true for i = 2 and 3. Let i = 4 or 

6. Then S is an (i)-set for A iff  𝐴|𝑆 
−

 is an (i)-algebra iff   𝐴|𝑆 
−
 
∧
 is an (i)-algebra  iff  𝐴 |𝑆  

−
 

is an (i)-algebra, (since   𝐴|𝑆 
−
 
∧
 =   𝐴|𝑆 

∧
 
−

 =  𝐴 |𝑆  
−

) iff 𝑆  is an (i)-set for 𝐴 . 

Let 𝑆 ∈ 𝑓𝑖 𝐴 . Then 𝑆  ⊂ H for some H ∈ 𝑓𝑖 𝐴  . By our assumption H is a p-set for 𝐴 . 

Hence, by Proposition 1.3.17, H = 𝐺 , where G = H ∩ X is a p-set for A. Now, S ⊂ 𝑆  ∩ X ⊂ H ∩ 

X = G which is an (i)-set for A, as 𝐺  ∈ 𝑓𝑖 𝐴  , Therefore: S = G and 𝑆  ∈ 𝑓𝑖 𝐴 .  Conversely, let 𝐺  
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∈ 𝑓𝑖 𝐴   for some p-set G for A. Then G is an (i)-set for A and so, G ⊂ S for some S ∈ 𝑓𝑖 𝐴 . But 

then 𝑆  is an (i)-set for 𝐴  and 𝐺  ⊂  𝑆 . Therefore, 𝐺  = 𝑆  and G = 𝐺  ∩ X = 𝑆  ∩ X. Thus G ⊂ S ⊂ 𝑆  

∩ X = G, i.e., G =S ∈ 𝑓𝑖 𝐴 . Hence 𝑓𝑖 𝐴   = {𝑆  : S ∈ 𝑓𝑖 𝐴  } and ∈ 𝑓𝑖 𝐴  =  𝑓𝑖 𝐴   ∩ X. Since every 

𝑆  ∈ 𝑓𝑖 𝐴   intersects X, 𝑓𝑖 𝐴   n X = {𝑆  n X : 𝑆  ∈ 𝑓𝑖 𝐴  }. 

 

1.3.17 REMARK  
Let i = 4 or 6. Suppose that members of 𝛿𝑖(A) and 𝑓𝑖 𝐴   are p-sets for A and 𝐴  

respectively. Since 𝑓𝑖 𝐴  = 𝑓𝑖 𝐴   ∩ X, 𝛿𝑖(A) < 𝑓𝑖 𝐴   ∩ X. Let  𝛿𝑖(𝐴) ~ = {𝐸𝑖
~:𝐸𝑖 ∈ 𝛿𝑖(A). Since 

members of 𝛿𝑖(A) are p-sets for A,  𝛿𝑖(𝐴) ~ is a decomposition of m(A). For 𝑆𝑖 ∈ 𝑓𝑖(A), 

𝑆𝑖
~ ⊂ 𝐸𝑖

~ for some  𝐸𝑖 ∈ 𝛿𝑖(A).  But 𝑆𝑖
~ ∈ 𝑓𝑖 𝐴   and therefore, 𝛿𝑖(𝐴 ) <  𝛿𝑖(𝐴) ~. Thus 𝛿𝑖(𝐴 ) ∩ X 

<  𝛿𝑖(𝐴) ~ ∩ X = 𝛿𝑖(A). Hence 𝛿𝑖(A) = 𝛿𝑖(𝐴 ) ∩ X. 

We do not know whether A is weakly analytic implies that 𝐴  is weakly analytic or 𝐴  is 
weakly analytic implies that A is weakly analytic.  

1.3.18 EXAMPLE  
Consider the function algebra A = A(D)|S of Example 1.3.5(ii). Then we know that 𝛿7 

= {T, {0}} and hence A is not analytic. However, 𝐴  = A(D) which is analytic. For an example 

of a function algebra A which is analytic but 𝐴  is not analytic, we refer to [20, MR 81j, 
46083],  

In section 1, we have proved that the Bishop decomposition determines the Silov 
decomposition (Corollary 1.2.13). We prove that some of the decompositions 𝛿𝑖  will 
determine the others. We use the following ideas of Sidney [11]. 

Let A be a function algebra on X and f(A) denote the Silov decomposition for A. We 
denote an ordinal number by 𝜎. Define inductively, the decompositions ℓ𝜎= ℓ𝜎(𝐴) of X into 
closed subsets as follows: 
(i) ℓ𝑜  = {X}; 
(ii) ℓ𝜎+1 = {𝐹 ∶ 𝐹 ∈ 𝑓(𝐴|𝐸), 𝐸 ∈ ℓ𝜎  > and 
(iii) if 𝜎 is a limit ordinal, then ℓ𝜎= {𝐸𝜎 ∶  𝐸𝜎 =  𝐸𝜎′𝜎 ,<𝜎  ,𝐸𝜎 ∈ ℓ𝜎} i 

Sidney [11] has observed the following results: (S1) The above inductive process of 
taking decompositions terminates at some point. Let 𝜎(A) denote the first ordinal number 𝜎 
such that  ℓ𝜎+1 =  ℓ𝜎 . 
(S2) ℓ𝜎(𝐴) = 𝑘 𝐴 , the Bishop decomposition for A. 

(S3) Each E ∈ ℓ𝜎  is a p-set for A and it is the union of members of k(A) for every ordinal 𝜎. 
Now, we are ready to prove the result regarding the determination of one type of 
decomposition by the other. 

1.3.19 PROPOSITION  
Let A and B be function algebras on X. Then 𝛿4(A) = 𝛿4 (B) ⇒ 𝛿3(A) = 𝛿3(B) ⇒ 𝛿2(A) = 

𝛿2(B) ⇒ 𝛿1(A) = 𝛿1(B) and 𝛿5 (A) = 𝛿5 (B) ⇒ 𝛿3 (A) = 𝛿3(B). 
Proof. Suppose 𝛿2(A) = 𝛿2(B). It is enough to show that EA = EB, where EA(EB) denote the 
essential set of A(B). Let P2(A) and P2(B) denote the set of all singleton elements of 𝛿2(A) and 

𝛿2(B) respectively. Then EA = 𝑋 − 𝑃2(𝐴)              and EB = 𝑋 − 𝑃2(𝐵)             , by Proposition 1.2.10. Since 
𝛿2(A) = 𝛿2(B), we have P2(A) = P2(B). Therefore, EA = EB and hence 𝛿2(A) = 𝛿2(B).  

We have shown that 𝛿3(A) = 𝛿3(B) ⇒ 𝛿2(A) = 𝛿2(B) (Corollary 1.2.13), 
Assume that 𝛿4(A) = 𝛿4 (B). First we shall show that 𝛿2(A) = 𝛿2(B). For this, it suffices 

to show that AR = BR. Let f ∈ AR. Then f|𝐹  is constant for each F ∈ 𝛿2(A), Since  𝛿4 (B) = 𝛿4 (A) 
< 𝛿2 (A), f|H is constant for each H ∈ 𝛿4 (B). So, f|H ∈ B|H for each H ∈ 𝛿4(B). Since 𝛿4(B) has 
the (D)-property for B, f ∈ B. Thus AR ⊂ BR. Similarly, BR ⊂ AR and hence 𝛿2(A) = 𝛿2(B). Now, 
we use Sidney’s technique. Accordingly, 𝛿2(A) = 𝛿2(B) is equivalent to saying that ℓ1(𝐴) = 
ℓ1(𝐵). Suppose ℓ𝜎(𝐴) = ℓ𝜎(𝐵). We want to show that ℓ𝜎+1(𝐴) = ℓ𝜎+1(𝐵). Since ℓ𝜎+1(𝐴) = {F 
∈ f(A|E) : E ∈ ℓ𝜎(𝐴)}, it is enough to show that (A|E)R = (B|E)R for E ∈ ℓ𝜎(𝐴) = ℓ𝜎(𝐵). Let E ∈ 
ℓ𝜎(𝐴) and f ∈ (A|E)R. By (S3), E is saturated with k(B) and hence with 𝛿4(B), since 𝛿4(B) < 
𝛿3(B) = k(B). Let H ∈ 𝛿4(B) = 𝛿4(A) and H ⊂ E. Since 𝛿4(A) < 𝛿3(A) and (S3) holds, there 
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exists K ∈ 𝛿3(A) such that H ⊂ K ⊂ E. It follows that f|H is constant. Thus f ∈ C(E) and f|H  ∈ 
(B|E)|𝐻  for each H ∈ 𝛿4(B), H ⊂ E. Also, by (S3), E is a p-set for B. Since 𝛿4(B) has the (S)-
property for B, 𝛿4(𝐵) ∩ E has the (D)-property for B|E and hence f ∈ (B|E)R  and (A|E)R ⊂ 
(B|E)R. Similarly, (B|E)R ⊂ (A|E)R . and so ℓ𝜎+1(𝐴) = ℓ𝜎+1(𝐵). Let 𝜎′ be limit ordinal and 
suppose that ℓ𝜎(𝐴) = ℓ𝜎(𝐵) for all 𝜎 = 𝜎′. Then E ∈ ℓ𝜎′(𝐴) iff E =  {𝐸𝜎 :𝐸𝜎 ∈  ℓ𝜎(𝐴)}𝜎<𝜎′  iff E 
=  {𝐸𝜎 :𝐸𝜎 ∈  ℓ𝜎(𝐵)}𝜎<𝜎′  iff E ∈ ℓ𝜎′(𝐵). Hence, for each ordinal 𝜎, we have E ℓ𝜎 𝐴 = ℓ𝜎(𝐵). 
So,  𝛿3(A) =  𝛿3(B). 

By the same argument, we can prove that 𝛿5(A) = 𝛿5(B) => 𝛿3(A) = 𝛿3(B). 
 

1.3.20 REMARK  
The decomposition 𝛿7 does not determine any other decomposition. For, let A = 

A(D)|S of Example 4.4.5(ii) and B = A + IT . Then 𝛿7(A) = {T, {0}} and 𝛿𝑖(A) = {S} for each i < 
7. Also, 𝛿𝑖(B) = 𝛿𝑖  (A|T) U {x) x ∉ T for all i ≤ 7. Therefore, 𝛿𝑖(B) = {T, {0}} for i ≤ 7. Hence 
𝛿7(A) = 𝛿7(𝐵) = {T, {0}}. But 𝛿𝑖(B) = {T, {0}} < {S} =𝛿𝑖(𝐴) for i < 7. 
 

1.4 CONCLUSIONS 
In this paper, we deal with certain decompositions of a compact Hausdorff space X 

associated with a function algebra A. The most well known decompositions are those of 
Bishop and Silov. While the two decompositions coincide in case of many known function 
algebras, there are function algebras where the two differ. It is natural to look for conditions 
under which these decompositions are coincident. Section 1 is devoted to the study of this 
problem. In section 2, we study the Bishop and Silov decompositions for restriction algebras. 
The last section is devoted to the study of several other decompositions such as analytic, 
weakly analytic, weakly prime etc. In addition to proving certain properties of these 
decompositions, we discuss these decompositions for the tensor product. Finally, we show 
that some of these decompositions determine some of the others. 
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