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ABSTRACT 

This paper has been devoted to the study of vector function spaces on X. We define the Bishop and 

Silov decompositions in several ways for vector function spaces. If A denotes a complex function space on X 

then the tensor product A $ B of A and Banach algebra B can be regarded as a vector function space on X. 

The concept of the slice product A⊗  B of a function algebra A with a Banach algebra B has been defined 

earlier [1]. We extend the idea of A # B for a complex function space A on X. Then A # B also can be 

considered as a vector function space on X and A⊗  B ∁ A # B, Mainly, we concentrate our study to the 

decompositions and their properties for vector function spaces of the types A⊗  B and A # B, where A 

denotes a complex function space on X. In particular, we show that the Bishop (Silov) decompositions for a 

complex function space A and the vector function space A⊗  B are the same. 

KEYWORDS: function spaces, function algenbra, decompositions, Bishop and Silov decompositions 

 

INTRODUCTION 

Let X be a compact Hausdorff space and A be a linear subspace of C(X) that contains the constant 

functions. AR denotes the real functions in A, i. e, ,= AR A ∩ CR(X). 

The real [2] and complex [3] multipliers for A are defined respectively as, 

M(A) = { f ∈ CR(X) : f g ∈ A for every g ∈ A} and 

N(A) = { f ∈ C(X) : f g ∈ A for every g ∈ A }. 

 

DEFINITIONS [15]. (i) A subset K of X is said to be a set of antisymmetry in (FP)- sense or an (FP)-

antisymmetric set for A if whenever f is in MCA|K), then f is constant.  

The collection of all maximal sets of antisymmetry in (FP)-sense forms a decomposition of X. We 

shall call this decomposition the Bishop decomposition in (FP)-sense for A and denote it by KFP (A). 

(ii) A set of constancy of M(A) is called an (FP) - Silov get for A. 

The collection of all maximal (FP)-Silov sets forms a decomposition of X, called the Silov 

decomposition in (FP)-sense for A. We shall denote it by FFP(A). 

 

DEFINITION 1: [3]. A subset K of X is said to be a set of antisymmetry in (E)-sense or an (E)- 

antisymmetric set for A if f ∈ N(A) and f |K is real-valued, then f is constant on K. 

The collection of all maximal sets of antisymmetry in (E)-sense forms a decomposition of X. We 

shall call this decomposition the Bishop decomposition in CE)-sense for A and denote it by KE (A). 

In a similar fashion we can define the Silov decomposition with the help of N(A).  

 

DEFINITION 2: A set of constancy of N (A)R is called an (E)-Silov set for A. 

The collection of all maximal (E)-Silov sets forms a decomposition of X which we shall call the 

Silov decomposition in (E)-sense for A and denote it by FE(A). 

Now onwards, we shall take A to be a function space on X, i.e., A is a closed subspace of C(X) with 

1 ϵ= A. 

Remarks 

(i) M(A) and N(A) are closed subalgebras of AR and A respectively, containing constants. 

(ii) M(A) = N(A))R and hence FFP(A) = FE(A) which we shall denote by F(A). Since, for any subset 

K of X, (NCA|K)R ⊂ MCA|K),  kFP(A) < kE(A). Also, since N(A) is an algebra, kE (A) < (A) < 

(In fact, kE(A) and kE (A) are the usual  Bishop and Silov decompositions for N(A)). 
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(iii) Since N(A) is a closed subalgebra of CR(X) and k(A) is a decomposition consisting of sets of 

constancy of M(A), k(A) is an u.s.c. decomposition. 

(iv)  If A is an algebra, then M(A) = A and for any subset K of X, M(A)|k)R = (N|k)R = (NA|k)R. 

Therefore, kE(A) = kFP(A) = 9fCA), where 9CCA) is the usual Bishop decomposition for A. 

Also, F(A) will be the usual Silov decomposition for A. 

(v) If A is a subspace of CR (X), then kE(A) = fE(A). 

(vi) It has been shown by Feyel and Pradelle that kFP(A) satisfies the CD)-property for A [4, 

Theorem 1]. However, looking to the proof of the result, it is clear that the authors have proved 

that kFP(A) satisfies the stronger (GA)-property for A (that is, if μ ∈ b (A)e then supp μ ⊂ K for 

some K e % CA) ; see Definition 0.1.10(iii)) . Hence it follows from Remarks O. l. l l (i), (ii) 

and (ii) above that kE (A) and k(A) also have the (GA),(S) and (D)-properties for A. 

Recently Yamaguchi and Wada have defined the idea of a set of antisymmetry for a closed subspace 

A of C(X) which separates the points of X [5]. Their definition is exactly the same as that of [6]. They have 

also proved that the corresponding decomposition has the CGA)-property for A and its members are p-sets 

for a compare. 

Paltineanu [2] has defined antialgebraic sets for a subspace of CR(X).  

Let M be a closed subspace of CR(X) with 1 e M. For a subset S of X, define 

G(S) = {  f ∈ M: for each g e M, there exists h ∈ M such that fg = h on S }. 

A subset S of X is called an antialgebraic set for M if f ∈ G(S) implies that f is constant on S. 

The collection of all maximal antialgebraic sets for M is a decomposition of X. 

Remark. Paltineanu [2] has shown that the above decomposition has the (GA)-property for M. 

However, it is easy to see that the Paltineanu’s decomposition of X into maximal antialgebraic sets for a 

closed subspace of CR(X) coincides with the Bishop decomposition in (FP)-sense. We have already noted 

that the latter has the (GA)-property. Thus Paltineanu’s result is a special case of the result of Feyel and 

Pradelle [6]. 

If there is no danger of confusion regarding the subspace A under discussion, then we shall write kFP 

,kE and F instead of kFP(A), kE (A) and k(A) respectively. 

 

Theorem 1. Let A be a function space on X and l be an u.s.c. decomposition of X with the (D)-property for 

A. Then k < l. 
Proof. Let F ∈ k. For f ∈ CR(X/ l, we have f o q ∈ CR(X), where q: X⟶X/ l is the quotient map. 

Also, (f o q )|gS i  constant, say αS , for each S ∈ l. Hence f o q ∈ A, by the (D)-property. To show that f o q 

∈ (N(A)R, let h ∈ A. Then f o q} h|S = αSh|S ∈ A|S  for all S ∈ l. Since l has the CD)-property for A, (f o q) h 

∈ A. Hence f o q ∈ N(A) and so, as in the proof of Theorem 1, F ⊂ S for some S ∈ 𝑙. 
 

The following corollary is immediate. 

Corollary 1 (i) kFP= F if and only if kFP is u.s.c. and (ii) kE = F if and only if if is u.s.c.. 

Note that if kFP is u.s.c., then kFP - F and hence 

kFP = kE = F. Thus if kFP is u.s.c., then kE is u.s.c..  

Next corollary shows that the Bishop decompositions determine the Silov decomposition. The proof 

is similar to the proof of Corollary 5.1.13. Corollary 2.1.9. Let A and A2 be function spaces on X. Then 

 kFP(A1)= kFP(A2) →k(A1)=F(A2)  and 

 kE(A1)=kE(A2) → k(A1) = F(A2). 

 

The converse of the above corollary is not true. 

We shall give an example in which kE(A1) = kE(A2)but kFP(A1) ≠ kFP(A2)  

and also give example in which kFP(A1) = kFP(A2) but kE(A1) ≠ kE(A1). 
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Note that, by Remark and Theorem 1, if f is finite, then X - X. The following theorem shows that 

somewhat stronger result is true.  

 

Theorem 2. If y is finite, then kFP. = F 

Proof. Suppose that F = { F1,F2 ,...,F2 } Now, M(A) is an algebra and hence, as in the proof of 

Theorem 1.1.15, for each i = 1,2, ... ,n; there exists fi e MCA) such that f. = 1 

on F. and f. = 0 on Fj. for every j ≠ i. 

Fix Fj. letg ∈ M(A|Fj). Then there exists g ∈  A such that g|Fj = g. Since fj  ∈ M(A), g fj. ∈ A. To 

show that g'fj.  M(A), let h ∈ A. Then (g' fj.)h| Fk = [(g' h) | Fk ] =0 if k ≠ i and (g'fj)|hFi = (g'h)|Fi = g(h|Fi)  

∈ A| Fi , as g e M(A| Fi). Since F has the (D) property for A, (g f ) h e A. Hence g fi. ∈ MCA). Therefore, g fi 

is constant on Fi. and hence g is constant. This proves that F is a set of antisymmetry in (FP)-sense for A. 

Consequently, FFP=F 

The proofs of the following two propositions are similar to the proofs of Propositions 1 and 2. 

Proposition 1. Let S be a CR set for A. Then 

kFP(A|S) < kFP ∩S, kE (A/) < kE(A) and 

k/ (AS) < F(A) ∩ S. 

Proposition 2. If S is a CR set for A which is saturated with kFP(A) then kFP(A|S) = kFP(A) ∩ S 

Remark 2.1.13. The Proposition 2.1.12 is not true for kE (Take S = F). 

 

Generalization of a result of Hayashi 

We have shown that the Silov decomposition is the finest u.s.c. decomposition with the (D)-

property for a function space on X. Hayashi [7] has proved that the Bishop decomposition is the finest 

Hausdorff decomposable decomposition} with the (S)-propert.y for a function algebra. We generalize the 

result for a function space on X. For the proof, we need certain properties of p-sets, which we discuss now. 

Throughout this section, A denotes a function  space on X. We begin with recalling some 

definitions. 

A subset S of X is called a peak set for A if there exists f ∈ A such that f/S = 1 for all x ∈ X-S. The 

intersection of peak sets is called a generalized peak set for A. A closed subset S of X is called a p-set for A 

if A ∈ A⊥, where μS  (G) = μ(S ∩ G) for every Borel set G of X. 
 

Remarks  

(i) Suppose S ⊂  T ⊂  is a p-set for A and S is a p-set for A|T , then S is a p-set for A. 

(ii) Let i Sα : α ∈ ⋀ } be a family of p-sets for A. Then S = ∩  |α  S |α  is a p-set for A [7, p.6]. 

 

Proposition 3. If S is a p-set for N(A), then S is a P-set for A. 

Proof. Let μ ∈ T⊥ and ε > 0. Then there exists an open set U such that S ⊂ U and | μ|(U-S) < ε Since 

S is a p-set for N(A), by Remark, S is an intersection of peak sets for N(A). So, there exists a peak set T for 

N(A) such that S ⊂ T ⊂ U [8]. Let f ∈ N(A) be a peaking function for T. Then fn converges to XT boundedly 

and pointwise, where XT is the characteristic function of T. Let g ∈ A. Then gfn ∈  A and hence ∫ T gdu| = 

∫ X gdTdμ = lim|n ∫ X gfμ = 0, But |∫ S gfμ -∫ Tgd μ. |< ε| | g | |This implies that ∫ S gdfμ = 0, ε as s is 

arbitrary. Since this is true for every g ∈ A, μs ∈ AT . Having discussed the p-sets for A, we go to the main 

result of this section. We start with a lemma.  

Lemma 1. If a decomposition ^ of X has the (D)-property for A, then ? has the (D)-property for 

N(A) 

Proof. Let f ∈ C(X) and f|S ∈ (NA)| for all S ∈ . Also, let g ∈ A. Since ℓ has the (D)-property for A, 

it suffices to show that fg|s  A|s − for all S∈ ℓ. Let S ∈ ℓ. Since f|s ∈ (N A s|)− there exists a sequence 
 hn   in N(A) such that hn  converges uniformly to f on S. Then ghn  ∈ A and therefore, ghn  ∈ A|s for each 

n. Since ghn  converges to gf uniformly on S, fg|s ∈ (A|s|)−. 
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We now define a Hausdorff decomposable decomposition.  

Definition  [7, p.14]. Let Y be a topological space. Two points y1 , y2 ∈ Y are said to be H-

equivalent if f(y1) = f(y2)for all f ∈ CR(Y), the set of all real-valued, bounded continuous functions on Y. 

The collection of all H-equivalence classes will be denoted by X(Y) ={YN}, and we define the 

decomposition xα  = { Yα} of Y for each ordinal number a, by transfinite induction, as follows : 

(i) If α = 0, then  -x0 ={ Y } ; 

(ii) If a does not have the immediate predecessor, then xα  = β < 𝛼  xβ ,where β < 𝛼  xβ= ∩ |β<𝛼  YB ∶

: YB∈ XB; 
(iii) If a has the immediate predecessor β, then xa =∪ |Yb∈xβ

x(Yb ). 

The process of defining a new partition, as above, from the previous ones will eventually stabilize, 

since the number a is limited by the number of partitions of Y. Hence there exists a minimum ordinal 

number a such that xa=xα+1. We denote this ordinal byσ(Y).The decomposition  xσ(Y) is called the 

Hausdorff decomposition of Y. If xσ(Y) consists of singleton sets {y} for all y ∈ Y, then Y is said to be  

 

(a) Hausdorff decomposable space. 

For a decomposition δ of X, let Y = X/ δ. For each ordinal a, define 𝑋𝛼
  = { 𝑌𝛼 : 𝑌𝛼  ∈ 𝑋𝛼  } = { 𝑞−1 

(𝑌𝛼 ) : 𝑌𝛼 ∈ 𝑋𝛼  } where q : X —> X/ δ is the quotient mapping and  𝑋𝛼  is the decomposition of Y as 

defined above. 𝑋𝛼  is called the decomposition of X associated with the decomposition 𝑋𝛼  of X/ δ. It is 

clear that 𝑥 𝜎(𝑌)  δ  if and only if  X/ δ is a Hausdorff decomposable space. 

 

We say that a  decomposition  δ of X is Hausdorff decomposable if xσ(x/δ) = δ. 

It is clear that if X is a compact Hausdorff space and 3 is an u.s.c. decomposition of X, then δ is 

Hausdorff  decomposable. 

Finally, we recall that a decomposition δ of X has the (S)-property for A if for any p-set T which is 

saturated with δ, δ ∩ T has the (D)-property for (A/𝑇)−. 

Theorem 3. Let A be a function space on X and δ <  kFP be a decomposition of X with the (S)-property for 

A. Then , x σ(y) = kFP, where  x σ(y) is the decomposition of  associated with the decomposition x σ(y)  of Y = 

X/ δ. 

Proof. Let q be the quotient map from X onto Y and for each ordinal α, left x a  : = { Y a  : Ya  ∈ xa} be the 

decomposition of X associated with the decomposition 𝑋δ  of Y. First we shall show that 

(i) Y a  is a p-set for A, for each Ya ∈  xa  and it is saturated with δ: 

(ii)  kFP < xα . 

IF a = 0, then xα  = {X}- and hence clearly (i) and (ii) hold. We assume that (i) and (ii) hold for all 

β< a.  If a does not have an immediate predecessor, then by the definition, xa  =   ⋀ xββ<𝛼 . Therefore, xα  = 

⋀ xβ β<𝛼 , i.e 

Y a  = {β(α Y a ∈ x β : Y b ⊂ Y a  } . By Remark 5.2.1 (ii), Y a  is a p-set and it can be seen that Y a  is saturated with 

γ Thus (i) holds. Since kFP <  xβ  for all β < α kFP <  ⋀ xββ<𝛼 =xα  

Suppose a has the immediate predecessor 𝛽. Let  K ∈ XFP . Then K ⊂ 𝑌 𝑎  for some 𝑌 𝑎  ∈  kFP .Then 

K⊂ 𝑌 𝑏  for some 𝑌 𝑏  ∈ 𝑥 𝛽 . Left f ∈ CR (Yb) .Then f o q ∈ CR  𝑌 𝑏  and (f o q)| ∈ CR (𝑌 𝑏 ) and (f o q)|E is constant 

for every E ⊂,𝑌 𝑏  E ∈ 𝛿. Since 𝛿 has the (S)-property for A,  ∩ 𝑌 𝑏 . has  the <D)-property for A|𝑌𝒃   Hence, by 

Lemma 2.2.3, 𝛿 ∩ 𝑌 𝑏 .  has the CD}-property for N(A|𝑦𝒃 ) Therefore,   

f o q ∈ N(A|𝑦𝒃 )  ∩ CR(𝑌𝒃 ,) i.e. , f o q M(A|𝑦𝒃 ) which implies that (f o q)|K  ∈ M(A|K ). Hence (f o 

q)|K is constant. This holds for any f ∈ CR (Yb). Thus q(k) ⊂Yb for some 𝑌𝛼  ∈ 𝑋𝛼 . So, we have K ⊂  Y α ⊂ 

Y α . and hence (ii) holds. Also, it can be seen that Y α  (Y α  ∈ Xα  ),is saturated with δ. Thus to prove (i) , by 

Remark 1 (i) , it suffices to show that Y α   is a p-set for A|Y α  . In view of Proposition 2, it is enough to prove 
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that Y α  is a p-set for N (A| Yb
 ). Let Yb/H be the quotient space of Yb  which is obtained by H-equivalence 

and p: Yb → Yb. /H be the natural quotient mappping. Since Yb/H is a compact Hausdorff space, singleton 

set {𝑝(𝑌𝑎)} in Yb/H is an intersection of peak sets {Sa} for CRYb/H). But, if f ∈ CR(Yb/H), then f o p o q ∈ 

CR(Y b) and f o p o q)/E is constant for every E⊂ Y b . , E ∈ 𝛿, Therefore, by the same argument as above, f o p 

o f o p o q ∈ Thus CR(Yb /H) o p o q c N(A/𝑌𝑏 
) and so, { (p o q)

-1
 (Sa)} are peak sets for N(A/𝑌𝑏 

 ). Since Y b  

= (p o q)-1 4(p (p(Ya  )) is the intersection of { (p o q)− (Sa)}, Y α   is the intersection of peak sets or a p-set for 

N(A/𝑌𝑏 
) which proves (i). 

Now, XFP <  𝑥 𝜎(𝑌) If is strictly finer than 𝑥 𝜎(𝑌) then there exists 𝑌 𝑇 ∈ 𝑥 𝜎(𝑌) such that Y T  = 𝑈𝑎  𝐾𝑎  for 

certain 𝐾𝑎  ∈ kFP, i.e, 𝑌 𝑇 is not an (FP)-antisymmetric set for A. Hence there exists f ∈ M (A|𝐾𝑎  such that f is 

not constant. But 𝑓|𝐾𝑎  ∈(𝑀 (𝐴|𝐾𝑎 ) and so, 𝑓|𝐾𝑎   is constant for each 𝐾𝑎 ⊂ 𝑌 𝑇 . Therefore, f defines a 

nonconstant real function on 𝑌𝑇  ∈ ∈  𝑥 𝜎(𝑌) . This contradicts the definition of 𝑥 𝜎(𝑌)  and completes the 

proof. 

Since XFP has the (S)-property for A, by taking 𝛿 = kFP  in the above theorem, it follows that kFP is  

Hausdorff decomposable. 

Corollary 2. Let A be a function space on X and 𝛿 be a decomposition of X which has the (S)-property for 

A and 𝛿 < kFP. Then 𝛿 = kFP if and only if 𝛿 is Hausdorff decomposable. Thus kFP is the finest Hausdorff 

decomposable decomposition with the (S)-property for A. 

Proof. As noted at the end of the last theorem, if kFP= 𝛿, then 𝛿 is Hausdorff decomposable. 

Conversely, suppose that 𝛿 is Hausdorff decomposable. Then 𝑥 𝜎(𝑌) = 𝛿, where Y =X/ 𝛿. But, by Theorem 2, 

𝑥 𝜎(𝑌)= kFP and hence kFP = 𝛿.  

If X is . a metrizable space, then the proof of Theorem 3 can be simplified with the help of the 

following proposition. 

Proposition 4. Suppose that X is a metrizable space. Let δ be a decomposition of X with the (GA}-

property for A. Then each E e 8 is a p-set for A. 

Proof. We imitate the method of the proof of Theorem 3 in [9]. Let E ∈ δ. It is enough to show that 

 μE  ∈  A⊥  whenever μ ∈ b(A⊥).  Let μ = b(A⊥)e  . Then there exists F ∈ δ such that supp μ  ⊂ F. We have E = 

F or E ∩ F = φ. Hence   𝜇𝐸 = 𝜇  0. Hence  μE  ⊂ A⊥ .let μ  ⊂ b(A⊥). Since X is metrizableC(X) is separable 

and hence the weak* topology on M(X)  is metrizable. Since b (A⊥)  is the weak* closed convex hull of 

b(A⊥)e    in M(X), by Choquet’s theorem [46, p.19], there exists a regular Borel measure X supported on 

(A⊥)e    such that f (μ)= ∫ 𝑓𝑑μ
𝑥

 =  ∫ 𝑓 𝜗 𝑑𝜆)(𝜗)
b(A⊥)e  for f every f= ∈ (xx). Now, E is a 𝐺𝛿 -set and hence  

∫ 𝑓𝑑μ
𝐸

 =∫ 𝑓𝑥𝑒𝑋
dμ = ∫

b A⊥  e  𝑓𝑥𝑒  𝜗 𝑑𝜆(𝜗) for every f ∈ (xx). But for 𝜗 ∈ b(A⊥)e  , 𝜗𝐸  = 𝜗 or 𝜗𝐸= 0. 

Hence, for f ∈ A, 0 = ∫ 𝑓𝑑μ
𝐸

  = ∫ 𝑓𝑑μ
𝑥

  =  ∫ (𝑓𝑥𝐸)𝑥
𝑑𝜗 =  𝑓𝑥𝐸)9 (𝜗). It follows that ∫ 𝑓𝑑μ

𝐸
  = 0 for each 

f ∈ A, i.e., 𝑢𝐸 ∈  𝐴⊥”.85 

 

To see how the above proposition simplifies the proof of Theorem 5, we observe that to prove (ii) 

for 𝑥 𝛽  we need (i) and (ii) for 𝑥 𝛽  𝛽 < a. Now,  if we assume 

(ii) for 𝑥 𝛽 , by taking 𝛿 = 𝑥 𝛽 , in the above proposition, (i) immediately follows for . 𝑥 𝛽 , Hence (ii) can be 

established for𝑥 𝛽 , (as already proved in the proof of Theorem 5). Having proved (ii) for 𝑥 𝛽 , (i) for 𝑥 𝑎 , also 

follows immediately from Proposition 5 and no separate proof for this (as given in the latter part of the proof 

of Theorem 5) is necessary. 

Remarks. (i) If kE = kFP, then, since kE k(N(A)), the usual Bishop decomposition for N(A), kFP has 

the (S)-property for N(A). Conversely, if kFP has the (S)-property for N(A), then, by Corollary 5.2.6 applied 

to N(A), kFP = kFP (N(A) = kE.as kFP<kE Hence kFP kE if and only if kFP  has the (S)-property for N(A). We 

shall give an example where kFP < kE example1 (b) which shows that does not satisfy the <S)-property for 

N(A), in general. 
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(ii) Since f = 𝑥 1 and kFP = 𝑥 𝜎(𝑌) for Y =X/k𝐹𝑃 , it follows from the proof of Theorem 2 that the members of f 

and k𝐹𝑃 , are p-sets for A. Since kE =k(N(A)), by Proposition 2, members of kE are p-sets for A also.  

We give examples of decompositions which are strictly finer than kFP 

Examples 2. (i) Let, X = [0,1] x [0,10] and m be the Lebesgue measure on X.  Let A = {f ∈ CR(X): 

∬𝑓(x,y)u(x)dm(x,y) = 0 for all u ∈ CR[0,10] } Then A is a closed subspace of CR (X) and  kFP(A) = {Fx: 

0,≤×≤1}, where Fx = { (x,y): 0 ≤×≤1}15  Example 6(d)]. Let 𝛿 {Fx: 0,<×≤1}U { 0, 𝑦 }: 0 ≤ 𝑦 ≤ 1}. 

Then 𝛿 is a decomposition of X and 𝛿 >≦ kFP(A) It can be checked that 𝛿 is Hausdorff decomposable. 

Hence, by Theorem 5, 𝛿 does not have the (S)-property for A. 

(ii) Consider the function algebra B of Example 6 (iii). Then B is an antisymmetric algebra, i.e., k(B) = {X}. 

Let 𝛿 be the decomposition consisting of maximal weakly analytic sets for B. Then we have seen that 𝛿 ≦ 

k(B) and 𝛿 has the (GA)-property for B. Hence 𝛿 has the (S)-property for B. Thus, by Corollary 2, 𝛿 is not 

Hausdorff decomposable. Also, by Corollary 2, we can say that there is no function space A on X for which 

kFP(A)= 𝛿. 

We can define the essential set of a function space on X as we have defined it for a function algebra. 

Thus if I denotes the largest closed ideal of C(X) contained in A, then E (A) = {x ∈ X: f(x) = 0 for all f ∈ I} 

is called the essential set of A. 

The existence of such I can be shown as it is shown for function algebras. 

Remarks  

(i) Since I ⊂ N(A), E(A) = E(N(A)), where E(N(A)) denotes the essential set of N(A). Hence, by 

Proposition 2, E(A) is a p-set for A. 

(ii) If f ∈ C(X) and 𝑓𝐸(𝐴)= then f ∈ NCA). 

(iii) If F is a closed set such that f ∈ C(X) and 𝑓|𝐹= 0 => f ∈ A, then E( A) ⊂ F. 

The following proposition can be proved exactly as in the case of a function algebra [29]. 

Proposition 3. Let A be a function space on X and E(A) denote the essential set of A. Let PFP PE and 

P denote respectively the union of all singleton sets of (A) and F(A). Then E(A) = 𝑋 − 𝑃𝐹𝑃
          = 𝑋 − 𝑃𝐸

         = 

𝑋 − 𝑝.         

 

Decompositions far the space of affine functions 

Let K be a compact convex subset of a locally convex topological vector space and OK denote the 

set of extreme points of K. Also, let A(K) denote the space of continuous, real-valued affine functions on K. 

Ellis [11] has discussed the Bishop and Silov decompositions for A(K). Since a function in A(K) is 

determined by its value on OK, it is natural to concentrate on the space A(K)|𝜕𝐾    , where 𝜕𝐾     denotes the 

closure of OK. It is easy to see that A(K)|𝜕𝐾     is a closed subspace of CR𝜕𝐾    ) which contains constants. As we 

have noted earlier, Paltineanu [2] has defined the decomposition of X into maximal antialgebraic sets for a 

subspace of CR(X). Also, Feyel and Pradelle [6] have defined the Bishop and Silov decompositions for a 

cone of CR(X). In this section, we compare the decompositions for A (K)|𝜕𝐾     defined by these authors ([3], 

[6], [2]). 

There is a natural association between a function algebra A and A (Z) for a suitable compact convex 

set Z. We study the relation between the decompositions for A and for A(Z) which we shall use to construct 

some examples in the next section. 

 

Definition 1. The centre of A(K) is the set of all f ∈ A(K) such that for each g ∈ A(K), there exists h ∈ A(K) 

with (fg)|OK = h|OK. It  is denoted by C(A(K)). 

It is clear that C(A(K))|𝜕𝐾     forms a uniformly closed subalgebra of CR(𝜕𝐾    ) and contains constants. 

For E ⊂ OK,𝑐𝑜𝐸      denotes the closed convex hull of E. For the definition of a split face of K and the 

theory related to A(K), we refer to Alfsen [10]. 

Ellis [11] has defined the Bishop and Silov decompositions for A(K) as follows. 
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Definitions 2. (i) A subset E of ∂K is said to be a set of antisymmetry if whenever f ∈ A(K) and f|C𝜕E        ∈ 

C(A(C𝜕E     )) then f|E  is constant. 

If {Sα  : α ∈ ∧ } denotes the collection of all maximal sets of antisymmetry, then Sα  = ∂Eα  , where 

Eα  is some closed split face of K, for each a c A. The family { Eα  : a ∈ 𝛼 ∈ ∧ }is called the Bishop 

decomposition for A(K) and is denoted by f(A(K)). 

(ii) The sets of constancy of C(A(K))|  |𝜕𝐾     are { ∂𝐹𝑎  : a ∈ ∧ }, where 𝑓𝛼 ’s are closed split faces of K. 

These faces 𝑓𝛼  are called the faces of constancy for C(A(K). The family {𝑓𝛼 : a ∈ ∧ } is called the Silov 

decomposition for A(K) and is denoted by f(A(K))., 

We shall use 𝛿 and f for  𝛿(A(k)) and  𝛿(A(k)), The members of 𝛿 and f are pairwise disjoint and K 

= 𝑐𝑜   (  𝑓𝑎𝑎 ) = 𝑐𝑜   ( 𝐸𝑎𝑎 ). In fact,  𝜕𝑓𝑎𝑎  =𝜕K  and   𝜕𝐸𝛼𝛼  𝜕K. 

Ellis [11] has shown that f ∩ 𝜕𝑘     is a decomposition of 𝜕𝑘     and it has the (D)-property for A(k)| 𝜕𝑘     . He has 

also shown that, in general, 𝛿 ∩ 𝜕𝑘     does not cover 𝜕𝑘     and it may not have the (D)-property. He has also 

discussed conditions under which 𝛿 ∩  does have the (D)-property for A(K)|𝜕𝑘         

 

The following definition is due to Ellis [11, p.571]. 

Definition 3. A subset E of  𝜕𝑘     is called a weak set of antisymmetry if whenever f ∈  and f satisfies the 

condition that for each g ∈ A(coE)       , there exists h ∈ with fg|E = h|E , then f is constant on E. 

The maximal weak set of antisymmetry is of the form 𝑊𝛼  = 𝑇𝑎  ∩ 𝜕𝑘    , where 𝑇𝑎  is a closed split face 

of K. The family 𝑤(A (K) of all maximal weak sets of antisymmetry for A(K)|𝜕𝐾     forms a decomposition of 

𝜕K. Let F(A(K))={ 𝑇𝑎 : 𝑇𝑎  ∩  𝜕K ∈ 𝑤(A(K)} 

 

As usual, we write w and f for w (AK)) and f(A('A)). 

Remarks. (i) 𝛿 < f and f < f. 

 

(ii) If 𝜕K is closed, then 𝛿 = T, 

(iii) w has the (D)-property for A(K) |𝜕𝐾     . 
 

Paltineanu [2] has shown that the decomposition of 𝜕 𝐾into maximal antialgebraic sets for A(K) |𝜕𝐾      

coincides with the decomposition w of 𝜕 𝐾 into maximal weak sets of antisymmetry for A(K) 𝜕K defined 

above. So, by Remark, it follows that w coincides with the Bishop decomposition in (FP)-sense for A(K) 

|𝜕𝐾    , i.e.,w(A(K) =kFP(A(K) |𝜕𝐾    . 
The following proposition shows that f∩ |𝜕K  is the Silov decomposition for ACEO|^ as considered 

in section 1. 

 

Proposition 1. f ∩ =𝜕𝐾    = f(A(K) |𝜕𝐾    ). 
Proof. It is enough to show that M(A(K) |𝜕𝐾    ) = (A(K) |𝜕𝐾     where M(A(K) |𝜕𝐾    ) = {f ∈ CR(|𝜕𝐾    ): fh ∈

 A(K |𝜕𝐾    ). Let f ∈ M(A(K) |𝜕𝐾    ). Since A(K) |𝜕𝐾    ) contains, M(A(K) |𝜕𝐾     ⊂ A(K) |𝜕𝐾     and so, there exists f ∈ 

A(K) Then g|𝜕𝐾    ∈ A(K) |𝜕𝐾     and therefore, f(g|𝜕𝐾    )  ∈ A(K) |𝜕𝐾    , i.e , 𝑓 ′𝑔′ |𝜕𝐾     ∈ A(K) |𝜕𝐾    . Hence 𝑓 ′ ∈ 

C(A(K)) and f =𝑓 ′  𝑔′ |𝜕𝐾     ∈ C(A(K|𝜕𝐾    ). Thus  M(A(K) |𝜕𝐾    ) ⊂ C(A(K|𝜕𝐾    . 

Conversely, let f ∈C(A(K)) and f|𝜕𝐾     = 𝑓 ′ . Then, clearly, 𝑓 ′  ∈ CR(𝜕𝐾)       . Let 𝑔′ ∈ A(K) |𝜕𝐾    . Then 

there is g ∈ A(K) such that g |𝜕𝐾     𝑔
′  . But, then fg|𝜕𝐾     ∈ A(K) |𝜕𝐾    , as f ∈ C(ACK)). Therefore, fg|𝜕𝐾      ∈ A 

(K) |𝜕𝐾    , i.e 𝑓 ′𝑔′  ∈ Hence𝑓 ′=f|𝜕𝐾    ∈ and consequently, C(A(K) |𝜕𝐾     M(A(K) |𝜕𝐾    . 

Thus the decomposition of 𝜕𝐾     into maximal weak sets of antisymmetry and the restriction of the 

Silov decomposition for A(K) to 𝜕𝐾      coincide with the Bishop and Silov decompositions for A(K) 𝜕𝐾     

according to the Definitions 1 and 3. 

It is natural to ask when the Bishop and Silov decompositions for ACK) coincide. Ellis [12] has 
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answered this question in terms of weak centrality. 

If F is a closed split face of K, then 𝐹⊥  = {∈ A (K): f|F = 0 is called a near-lattice ideal. 

(ii) For a compact convex set K, A(K) is said to be weakly central if whenever I and J are maximal near-

lattice ideals in A(K) such that I ∩ C = J ∩ C, C being the centre of A(K), then I = J. 

Theorem. If A(K) is weakly central,then the Bishop and Silov decompositions for A(K)) are equal. 

In view of the above theorem, it is of interest to characterize the weak centrality of A(K). We give 

one such characterization in the following proposition. 

 

Proposition 2. A (K) is weakly central if and only if A(K) satisfies the following property : 

If G and H are minimal closed split faces 

(∗)  of K contained in the same face of constancy 

for C, then G = H. 

Proof. Assume that A(K) has the (∗)-property. Let I and J be maximal near-lattice ideals in A(K) with I ∩ C. 

= J ∩ C, 

 

i.e., 𝐺⊥  ∩ C = 𝐻⊥ ∩ C for closed split faces G and H in K. Now, G and H are compact convex sets 

and so, it can be checked that G ∩ 𝜕𝐾 = 𝜕𝐾 and H∩ 𝜕𝐾 = 𝜕𝐾. By Krein-Milman theorem, 𝜕𝐺 ≠ ∅ ≠ . 

Thus G ∩ 𝜕𝐾 ≠ ∅ and H ∩ 𝜕𝐾 ≠ ∅. Since K = 𝑐𝑜   (𝑈𝛼𝐹𝛼 ).  𝐹𝛼  ∈ f, 𝜕𝐾 ⊂ 𝑈𝛼𝐹𝛼 ) , So, G ∩ 𝐹𝛼  ≠ ∅ and H ∩ 

𝐹𝛽 ≠ ( for some 𝛼 and 𝛽. Now, G, H, 𝐹𝛼  𝐹𝛽  and are closed split faces of K implies that G ∩ 𝐹𝛼  and H ∩ 𝐹𝛽  

are also closed split faces of K [1, Proposition]. Also, we have G ∩ 𝐹𝛼  ⊂ G and H ∩ 𝐹𝛽  ⊂ H. Since 𝐺⊥  = I 

and 𝐻⊥  = J are maximal near-lattice ideals in A(K), G and H are minimal closed split faces of K [10, p.145]. 

Thus G ∩ 𝐹𝛼  = G and H ⊂ 𝐹𝛼  H ⊂ 𝐹𝛽  and H ⊂ 𝐹𝛽 . Suppose a ≠ 𝛽. Then there exists f ∈ C and constants 𝜆 

and 𝛿 such that f|𝐹𝛼 = 𝜆 and a f|𝐹𝛽  = 𝛿, 𝜆 ≠ 𝛿. Since G ⊂ 𝐹𝛼 , f- 𝜆 ∈ I and also f-𝜆 ∈ C, i.e., f- 𝜆 ∈ I∩C= = 

J∩C. So, f- 𝜆 ∈ J which is a contradiction. Therefore, 𝛼=𝛽 and G and H are contained in the same face of 

constancy for C. Hence, by the (∗)-property of A(K), G = H or equivalently I = J. 

Conversely, suppose that A(K) is weakly central and G and H are minimal closed split faces of K 

contained in the same face of constancy 𝐹𝛼  for C. Let 𝐺⊥  = I and 𝐻⊥ = J. Then I and J are maximal near-

lattice ideals in A(K). Let f ∈ I ∩ C. Then f|𝐺  is constant, say 𝜆. Therefore, f|𝐺  = 𝜆 = f|𝐻 . But f ∈ I implies 

that f|𝐺  = 0. So, f|𝐻  = 0. Thus f ∈ 𝐻⊥= J. Hence InC e J∩C ⊂ C. By the same argument, we can show that J 

∩ C ⊂ I ∩ C. Therefore, J ∩ C = J ∩ C. Since A(K) is weakly central, I = J or G = H. Hence A(K) satisfies 

the (*)-property. 

Given a function algebra, a space of affine functions can be associated with it, as the following 

construction shows. 

Let A be a function algebra on a compact Hausdorff space X and S denote the state space of A, i.e., 

S = {∅ ∈  A* : ∅(1) = ∅  = 1} . Let Z = co   (S∪(-Is)), the weak* closed convex hull of S ∪ (-iS). Then Z is a 

weak* compact convex subset of A* . Asimow [13] has shown that θ: A — A(Z), defined by (ef)(z) = 

Ref(z), for z ∈  Z, is a topological isomorphism of A onto A(Z). 

 

The Bishop and Silov decompositions for A and A(Z) are related as follows.  

Theorem. Let A be a function algebra on X and Z = co   (Su (-iS)). Then K∈ k(A) (respectively f(A)) 

if and only if K = K ∩ X for some k ∈ | δ(A(Z)) (respectively f(A(Z))) 

Since the members of δ (A(Z)) (and f(A(Z)))  are disjoint, the above correspondence is one-to-one also. 

Hence the following corollary is immediate. 

Corollary  K(A) = F(A) if and only if δ(A(Z)) = (A(Z)). 

 

Also, it is shown in [11, Proposition 4] that δ(A(Z))  = t(A(Z)) 
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4* Tensor product 

We know that the tensor product of two function algebras is a function algebra. Also, we have seen 

that if A and B are function algebras on X and Y respectively, then K(A ⊗   B) = K(A) x K(B) and f{A⊗  B) 

= f(A) x f(B). The tensor product can also be defined for function spaces. So, the natural question is 'what 

about the corresponding Bishop and Silov decompositions ?  We prove that 𝐾𝑓𝑝 (A⊗  B) = 𝐾𝑓𝑝 (A) x 𝐾𝑓𝑝 (B), 

𝐾𝐸(A⊗  B)= 𝐾𝐸(A) x 𝐾𝐸(B) and f(A⊗  B)  = f(A) x f(B), where A and B are function spaces on X and Y 

respectively. As usual, A ⊗  B denotes the uniform closure of the space of all finite linear combinations of 

functions { f ⊗  g : f ∈ A, g ⊗ B }•, where f ⊗ g is a function on X x Y defined by (f ⊗ g)(x,y)=f(x)g(y). It 

is easy to see that A ⊗  B is a function space on X x Y. For f ∈ A & B, 𝑓𝑥  ∈ B for all x ∈ X and  𝑓𝑦  ∈ A for 

all y ∈ Y, where 𝑓𝑥  (y) = f(x,y) (y ∈ Y) and 𝑓𝑦  (x) = f(x.y) (x ∈ x).  

Lemma. Let A and B be function spaces on X and Y. Then  

(i) N(A) ⊗  N(B) ⊂  N(C ⊗  B) and  

(ii) (ii) if f ∈ N(C ⊗  B), then 𝑓𝑥  ∈ N(B) for all x ∈ X and 

𝑓𝑦  ∈ N(A) for all y ∈ Y 

 

Proof. (i) Let f ⊗ g ∈ N(A) ⊗ N(B), where f ∈ N(A) and g ∈ N(B).Then, clearly, f ⊗ g ∈ C(X x 

Y). To show that f ⊗ g ∈ N(A ⊗  B), let h ∈ A⊗  B. Then h =  ∅𝑖
𝑛
𝑖=1  ⊗ 𝜓𝑖  where ∅𝑖 ∈ A and 𝜓𝑖  ∈ for all 

i. Thus (f  ⊗ g)h =(f ⊗ g)h  ∅𝑖
𝑛
𝑖=1 ⊗ 𝜓𝑖  =  ∅𝑖

𝑛
𝑖=1  𝑓∅𝑖

⊗ 𝑔𝜓 𝑖  ; Since f ∈ N(A) and g ∈ N(B), 𝑓∅𝑖
 ∈ A and 

𝑔𝜓 𝑖   ∈ B for all i. Therefore, (f ⊗ g)h ∈ A ® B. Now, if h ∈ A⊗  B, then there is a sequence {𝑛} in A ⊗B 

such that 𝑛  → h uniformly n non X x Y. But, as we have shown above, (f ⊗ g) 𝑛  ∈ A ⊗ B for n all n and 

hence (f  ⊗ g)h ∈ A⊗  B. Thus f ⊗ g ∈ N(A ⊗ B) and N(A) ⊗ N(B) ⊂ N(A ⊗  B). Since N(A ⊗  B) is 

closed, N(A) ⊗  N(B) ⊂ N(A) ⊗  N(B). 

 

(ii) Let f 𝜖 N(A ⊗  B) and g 𝜖 A. Fix y 𝜖 Y. Then (fyg_)(x)= (fyg_)g(x) = f(x,y)((g ⊗ 1) (x,y) = (f(g ⊗ 1 ))y 

(x) for all x 𝜖 X. Since f 𝜖 N(A ⊗  B), f(g ⊗  1))y 𝜖 A. Therefore, fyg 𝜖 A and consequently, fy 𝜖 N(A). 

Similarly, we can prove that fx 𝜖  N(B) for x 𝜖 X. 

 

Next, we prove the result regarding the decompositions for the tensor product. 

 

Theorem. Let A and B be function spaces on X and Y respectively. Then 

(i) f(A⊗  B) = f(A) x f(B); 

(ii) kE((A⊗  B)=kE(A)x kE(B) ands 

(iii) k FP(A⊗  B) = k FP(A) x k FP (B) 

 

Proof. (i) By Lemma 1 (i), CN(A) ⊗  N(B))R ⊂ (N(A⊗  B)R. Therefore, f(A ⊗  B) = f(N(A ⊗ B)) < f(N(A) 

⊗  N(B)), which is equal to f(A) x f(B), by Theorem 1.1.6. Hence f(A⊗ B) < f(A) x f(B). 

 

Conversely, let G 𝜖 f(A) and H 𝜖 f(B). It is enough to show that G x H is a set of constancy of (N(A 

⊗  B)}R. let f 𝜖 (N(A ⊗  B))R. Then, by Lemma 2.4.1(ii), fX 𝜖 (N(B))R and fy 𝜖 (N(A))R  for each x 𝜖 X and y 

𝜖 Y. So, f is constant on H for each x 𝜖 X and fy is constant on G for each y 𝜖 Y which implies that f is 

constant on G x H. Hence G x H is a set of constancy of (N(A ⊗ B)R. Consequently, we get f(A) x f(A) < 

f(A⊗ B). 

(ii) Since N(A) ⊗  N(B) ⊂ N(A ⊗  B), it is easy to verify that f(N(A ⊗ B)) < f f(N(A) ⊗  (N(B)) = f(N(A)) x 

f(N(B)), by Theorem 1.1.3(iii), where k indicates the usual Bishop decomposition. Thus kE.(A⊗ B) <kE (A) 

x kE (B). 
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Conversely, let G ∈ k(A) and H ∈ kE(B). To show that G x H is an (E)-antisymmetric set for A ⊗  

B, let f ∈ N(A ⊗  B) and  𝑓|𝐺𝑥𝐻  be real-valued. Then, by the same argument as in (i), we get 𝑓|𝐺𝑥𝐻   is 

constant.  Hence kE(A) x kE(B)< kE (A⊗ B). 

  Let G ∈ kFP (A) and H ∈ kFP (B). Also, let f ∈ M(A⊗  B 𝐵|𝐺𝑥𝐻 ) But M(A⊗  B 𝐵|𝐺𝑥𝐻 ) ⊂  M((A/𝐺)− 

⊗  (B/𝐻)−  ⊗  = N(A/𝐺)− ⊗  (B/𝐻))−
R . Therefore, by Lemma 2.4.1(ii), fy ∈ (N(A/𝑮)−

R = M(A/G) and fx ∈ 

(N(B/𝑯)− = M(B/𝑯)  for each x ∈ G and y ∈ H. Hence fx is constant on H and fy is constant on G for each 

x ∈ G  and y ∈ H. Thus f is constant. Therefore, G x H is an (FP)-antisymmetric set for A ⊗  B. Hence 

kFP(A) kFP (B) kFP(A⊗ B). 

Let T ∈ kFP(A⊗ B). It suffices to show that 𝜋1(T) is an (FP)-anti symmetric set for A, where 𝜋1: X x 

Y —► X is the projection map. Let f ∈ M {A|𝜋1(𝑇)}. Then f ⊗  1∈ M((A⊗ B|𝝅𝟏 𝑻 𝒙𝒀)) and so, f ⊗  1|T ∈ 

M(A⊗ B|T). Since T ∈ kFP (A ⊗  B), f ⊗  1|T is constant and hence f is constant which shows that 𝜋1(𝑇) is an 

(FP)-antisymmetric set for A. 

While we are discussing the tensor product of two subspaces, it would be of interest to know the 

relation between A(K1) ⊗  A(K2) and A(CK1xK2), where K1 and K2 are compact convex subsets of the same 

locally convex topological vector space and ACK1 x K2) is the set of all continuous, real-valued affine 

functions on K1 x K2. 

Let BA(K1 x K2) denote the set of all biaffine functions on K1 x K2, i.e., the set of all real-valued 

functions on K1 x K2 which are affine in each variable separately. Equivalently, 

BA(K1 x K2) = { f ∈ CR(K1 x K2): fx ∈ A(K2) and fy ∈ A(K1) for x ∈ K1, y ∈ K2 }. 

Remarks 2.4.3. (i) It is clear from the definition that A(K1) ⊗  A(K1) ⊂ BA(K2 x K2>. 

(ii) It is easy to check that A(K1 x K2) ⊂ BA(K1 x K2), 

However, A(K1,) ⊗  A(K2,) may not be contained in 

A(K1 x K2). 

Example 1. Let K1=K2 [0,10]. Define f : k1 —►R by f(x) = x and g : K2 —- R by g(y) = y. Then f 

∈ A(K1) and g ∈ A(K2). So, f ⊗ g ∈ A(K1) ⊗  A(K2). But it is easy to see that f ⊗ g ∈ A(K1x K2). 

We do not know whether A(K1 x K2) ⊂ A(K2) ⊗  A(K2).  

We are now almost ready to give examples of function spaces for which at least two of the three 

decompositions kFP, kE and f are not equal. We need one more lemma for that purpose. 

 

Lemma. Let B be a closed subspace of CR(X) with 1 ∈ B and A = B+iB = {f + ig: f, g ∈ B } . Then 

f(A) = f(B), kE(A) = kE (B) and kFP(B). 

Proof. First we show that NCA)  

= N(B) = iN(B) ……  

Let f ∈ N(B) ⊂ B and let g ∈ A, i.e. , g = g1 + ig2 , where g1 , g2 ∈ B. Then fg1 and fg2 are in B and 

so, fg = fg1 + ifg2 e B + iB = A. Therefore, f ∈ N(A) and N(B) ⊂ N(A) . Since N(A) is a complex subspace 

of C(X) containing constants, N(B)+ iN(B) ⊂ N(A). Conversely, let f ∈ N(A) ⊂ A. Therefore, f = f1 + if2 

with f1, f2  ∈ B. To show that f1, f2 ∈ N(B), let g ∈ B. Then fg ∈ A, as B ⊂ A and f ∈ N(A). Thus f1g + ifg2 ∈ 

B + iB. Since B ⊂ CR(X) and f1,f2 g are in B, f1g and f2g are in B. Hence f1, f2 ∈ N(B). Thus (1) holds. 

From (1) it is clear that (N(A))R = N(B) = (N(B))R. So, ^CA) = f(B). Also, for any closed subset G 

of X, we get N(A)|𝐺= N(B)|𝐺+ iNCB)|G and hence (N(A) |G )R = N(B) |𝐺   = (N(B) |)𝐺R. Thus fE(A) = kE(B). 

Let G be a closed subset of X. Since A = B + iB, A|G = B|G + iB|G . So, as we have proved above, N(A|G) = 

iN(A|G) + iNCB|G). Therefore, M(A|G) = (N(A|G))R = N(B|G) = H(B|G) and hence kFP(A) = kFP(B). 

The promised examples of subspaces now follow. We use the results of the previous section and 

technique of tensor product to construct the examples. 

 

CONCLUSIONS 
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In this paper, we study two Bishop type decompositions, defined by Feyel and Pradelle and by 

Edwards for a subspace A of COO. In section 1, we discuss the relation between these two types of Bishop 

decompositions and also their relation with the Silov decomposition. If A is a subspace of CR (X), then one 

of these Bishop decompositions coincides with the decomposition defined earlier by Paltineanu. The main 

theorem of section 2 states that the Bishop decomposition in (FP)-sense is the finest Hausdorff 

decomposable decomposition with the (S)-property for A. This generalizes a result of Hayashi. In section 3, 

we discuss the space A(fQ of continuous, real-valued, affine functions on a compact convex set K. In the 

last section, we prove that the Bishop and Silov decompositions of the tensor product of function spaces are 

the product of the corresponding decompositions. Finally, we use the results of section 3 and tensor product 

technique to give examples where at least one decomposition is different from the others. 
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